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Andreas Zöttl1,2,3 and Julia M. Yeomans1

1 The Rudolf Peierls Centre for Theoretical Physics, University of Oxford,
Clarendon Lab., Parks Rd., Oxford, OX1 3PU, United Kingdom
2 Institut fr Theoretische Physik, TU Wien, Wiedner Hauptstrae 8-10, A-1040
Wien, Austria
3 Erwin Schrödinger Int. Institute for Mathematics and Physics, University of
Vienna, Boltzmanngasse 9, 1090 Wien, Austria

E-mail: andreas.zoettl@physics.ox.ac.uk

Abstract. Understanding the transport of driven nano- and micro-particles in
complex fluids is of relevance for many biological and technological applications.
Here we perform hydrodynamic multiparticle collision dynamics simulations of
spherical and elongated particles driven through polymeric fluids containing
different concentrations of polymers. We determine the mean particle velocities
which are larger than expected from Stokes law for all particle shapes and polymer
densities. Furthermore we measure the fluid flow fields and local polymer density
and polymer conformation around the particles. We find that polymer-depleted
regions close to the particles are responsible for an apparent tangential slip velocity
which accounts for the measured flow fields and transport velocities. A simple
two-layer fluid model gives a good match to the simulation results.
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1. Introduction

Individual colloidal particles at equilibrium undergo
Brownian motion in Newtonian fluids such as water.
Since the pioneering works of Einstein, Langevin
and Smoluchowski, an excellent understanding of this
dynamics has been developed [1]. By contrast, the
random motion of colloids in complex fluids such
as polymer solutions and gels, and in biological
fluids and cells, is by far less well understood
although considerable progress has been made in this
research field during the last decades, both from
the experimental and the theoretical perspective (see,
for example Refs. [2–6]). Even more challenging
is understanding colloidal motion in complex fluids
driven out of equilibrium by, for example, external
forces or fluid flow [7], or if the system is intrinsically
out of equilibrium as in the case of active colloids [8,9].

Understanding the motion of colloidal particles
through polymer solutions and polymeric or filamen-
tous networks is of considerable importance in col-
loid science and for biomedical applications. For ex-
ample, using colloidal particles to probe the physical
properties of the crowded environment of living cells
has been used to distinguish healthy cells from cancer
cells [10]. Moreover, there is considerable interest in
understanding the motion of nano- and micro-particles
through biological gels such as mucus which line many

of the body cavities, for example the lungs and the
stomach [11–16]. In order to understand how differ-
ent particles – proteins, viruses, drugs, and food par-
ticles – cross biological barriers several experimental
studies of particle diffusion through mucus have been
performed [11–20]: However, many conventional drugs
become trapped in the mucus layer due to steric hin-
drance or short-range adhesive forces [21] and therefore
it is of high relevance to design new ways of efficiently
delivering drugs based on nanoparticles, which could
more efficiently cross the mucus barrier [13], or move
through other biologically complex body fluids such as
the extracellular matrix [21].

Simple, diffusion-limited motion in complex fluids
is usually too slow for efficient transport. A way
to overcome this is to use magnetic particles which
can be driven by external magnetic forces to specific
target regions [22, 23]. Other ways to drive nano-
or micro-particles through polymeric fluids are to use
optical driving forces [14, 24] or simply sedimentation
[25]. When a colloid moves in a Newtonian medium
of viscosity η, the expectation is that the velocity V
follows Stokes formula, V = F/(6πηa), with F the
driving force and a the radius of the particle. However,
Koenderink et al. showed experimentally that particles
driven by sedimentation in macromolecular xanthan
solutions move faster than expected [25]. This result
has been explained theoretically by the occurrence of
an apparent slip velocity, experienced by the driven
particles because they are surrounded by a uniform
polymer-depleted region [26,27]. However, the density
of polymers around a driven particle can be highly
non-uniform, as shown for a colloid dragged through
a macromolecular solution of λ-DNA with optical
tweezers [24]. Theories have also tried to take into
account the effect of local fluid flow around moving
particles, using for example the concept of dynamic
depletion for protein transport in polymer solutions
[28]. Lattice models have recently been used to
characterize the transport of a driven particle in
simplified crowded environments [29].

Mesoscale simulations provide a way of investi-
gating the underlying microscopic mechanisms relevant
for colloidal motion in polymeric fluids, but currently
there are very few simulations of driven colloids in
simple polymer solutions [24, 30]. It has been demon-
strated that multiparticle collision dynamics (MPCD)
is an efficient method to simulate fluctuating hydro-
dynamics of colloids (see, e.g. [31, 32]) and polymers
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(see, e.g. [33–39]). So far colloid-polymer suspen-
sions at equilibrium have been studied with MPCD in
Refs. [40–42]. Here we perform coarse-grained hydro-
dynamic simulations of driven spheres, ellipsoids and
rods moving in a fluid that contains varying concentra-
tions of explicitly modeled, ‘bead-spring’ polymers.

Besides the transport velocities, we determine the
fluid flow around the particles and the detailed local
polymer properties. Hence we are able to identify the
relevant mechanisms for enhanced colloidal transport
in polymer solutions. In Sec. 2 we introduce the
simulation method, and we present our results in Sec. 3.
We summarise our work in Sec. 4.

2. Methods

We model the hydrodynamics and fluctuations of
the background Newtonian fluids using multiparticle
collision dynamics. To simulate polymeric fluids we
couple coarse-grained, bead-spring polymers to the
solvent. The dynamics of the fluid particles and the
colloids is performed using molecular dynamics (MD)
simulations.

2.1. Multiparticle collision dynamics (MPCD)

The Newtonian background fluid is simulated using
MPCD. This is a coarse-grained solver of the Navier
Stokes equations which includes thermal fluctuations
[43, 44]. The fluid is modeled by point-like, effective
fluid particles of mass m which perform alternate
streaming and collision steps. In the streaming step
fluid particles move ballistically for a time δt so that
their positions xi are updated to

xi(t+ δt) = xi(t) + vi(t)δt (1)

where vi are their velocities. They are then sorted
into cubic cells of length a0 and, in the collision step,
all particles in a cell exchange momentum according to

vi(t+ δt) = vξ(t) + vrand(t) + vP (t) + vL(t) (2)

where vξ is the instantaneous average velocity in the
cell, vrand is a random velocity drawn from a Maxwell-
Boltzmann distribution at temperature T , and vP
and vL ensure local linear and angular momentum
conservation, respectively [44]. As basic units in the
simulations we chose length a0, mass m and energy
kBT . We use δt = 0.02

√
ma2

0/kBT and a fluid particle
number density n = 10a−3

0 in order to model viscous
flow at low Reynolds number. In the absence of
polymers the viscosity is then η0 = 16.04

√
mkBT/a4

0.

2.2. Polymer model

To simulate polymeric fluids, we add simple bead-
spring polymers to the Newtonian background fluid.
Each polymer consists of N = 12 beads of diameter

σ = a0 which are located at positions ri, i = 1, . . . , N .
Individual beads are connected by a stiff bond potential

Vbond =
1

2
kbond

N∑
i=2

(|∆ri| − l0)2 (3)

with ∆ri = ri − ri−1, l0 = a0 and kbond = 105kBT/a
2
0.

In some cases we include a bending potential

V Pbend =
1

2
kb

N∑
i=3

(
∆ri ·∆ri−1

|∆ri||∆ri−1|
− 1

)2

(4)

with kb = 12kBT in order to simulate semi-flexible
polymers, but we mainly study systems of flexible
polymers where kb = 0.

We use a purely repulsive soft Weeks-Chandler-
Anderson (WCA) potential [45] between polymer
beads,

VWCA(r) = 4ε

[(
σ∗

r

)12

−
(
σ∗

r

)6
]

+ ε (5)

for r < 21/6σ∗ and zero otherwise. Here r is the
distance between the beads, and we use ε = kBT and
σ∗ = σ/21/6. We consider fluids at different polymer
volume fractions ρ = {0.01, 0.05, 0.1, 0.2} with ρ =
NpNπσ

3/(6Vd) where Np is the number of polymers in
the simulation and Vd the simulation domain volume.
The polymers are initially randomly distributed in the
simulation box, but are not allowed to overlap with the
solid particles.

2.3. Colloidal spheres, spheroids and rods

We use three different types of solid particles immersed
in the polymeric fluids, namely (i) spheres of radius
a, (ii) ellipsoids with semi-minor axis a and semi-
major axis b, and (iii) rods of length 2b and width 2a,
modeled as a superellipsoid [46–48]. The surface of the
superellipsoid at time t = 0 is given by[(

x− x0

a

) 2
ε2

+

(
y − y0

a

) 2
ε2

] ε2
ε1

+

(
z − z0

b

) 2
ε1

= 1(6)

and its center is located at (x0, y0, z0). For ε1 = 1 and
ε2 = 1 Eq. (6) reduces to the equation of a conventional
ellipsoid with semi-minor axis a and semi-major axis
b, and if in addition b = a, to a sphere. In order to
model rods, we use ε1 = 0.5 while we keep ε2 = 1,
which means that their cross section is circular. All the
particle dimensions we studied are listed in Table 1.

To drive the colloids, we apply a force F(t) =
Fn(t) where n(t) is the instantaneous unit orientation
vector pointing along the long axis of the particle. This
is initially along the negative z direction (Eq. (6)). The
direction of the particle orientation remains constant
in time for spheres, but not for the other particle
shapes. In order to obtain approximately the same
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Table 1. Simulation parameters.

a
a0

b
a0

ε1 ε2 description Sx
a0

Sy
a0

Sz
a0

Nt
F

aeff(kBT/a2
0)

kb/kBT symbol/color code

3 3 1 1 sphere 48 48 48 70K 5 0 

3 3 1 1 sphere 48 48 48 70K 5 12 ★

3 6 1 1 short ellipsoid 48 48 60 90K 5 0 ▽

3 9 1 1 long ellipsoid 48 48 120 180K 5 0 ♢

3 6 0.5 1 short rod 48 48 60 90K 5 0 ○

3 6 0.5 1 short rod 48 48 60 60K 10 0 ○

3 6 0.5 1 short rod 48 48 60 45K 15 0 ○

3 6 0.5 1 short rod 48 48 60 30K 20 0 ○

3 6 0.5 1 short rod 48 48 60 25K 25 0 ○

3 9 0.5 1 long rod 48 48 120 180K 5 0 △

Figure 1. (a) Simulation snapshot around a solid particle
(black) driven by a constant force F through a polymer
solution. Different colors of the individual polymers are to aid
visualization. (b) 2D sketch of the components involved: driven
particle (grey), polymers (light and dark green), MPCD fluid
particles (black dots) including virtual particles (VP; black dots
in solid particle). The rectangular collision cell grid, which is
shifted randomly in every time step [44], is also shown. (c)
overview of the interactions between the different components in
the streaming and collision step. Short range forces are realized
by WCA potentials and bounce-back (BB) [49].

transport velocity for differently shaped colloids, we
normalize the magnitude of the applied force, F > 0,
by the effective radius aeff of a particle, defined by
aeff = 3

√
3Vp/4π where Vp is the volume of the particle.

2.4. Hybrid MPCD-MD simulations

To simulate the dynamics of the polymers and the
solid particles in the MPCD fluid we use a hydrid
MPCD-MD scheme [44, 49]. In parallel with the
MPCD streaming step the positions and velocities
of the polymer beads are updated by determining
the forces from the potentials [Eqs. (3) - (5)] and

using a Velocity Verlet algorithm [50] with time step
δtP = 0.002

√
mh2/kBT . The polymer beads, which

have masses mP = 10m, are coupled to the fluid by
including them in the collision step [33].

The colloid dynamics is also evolved using a
Velocity Verlet algorithm, but with a time step
δtB = 0.02

√
mh2/kBT . Fluid particles interact

with the colloids by applying a bounce back rule,
with momentum and angular momentum exchanged
accordingly. In order to accurately resolve the flow
fields near the colloids we use virtual particles inside
the colloids, which contribute to the MPCD collision
step [44]. In addition, polymer beads interact with the
solid particles via a soft repulsive potential. A sketch
of the simulated system including an overview of the
interactions between the different components involved
are shown in Fig. 1.

For all the systems studied we chose the simulation
box sizes in the x and y directions to be Sx =
Sy = 48, while varying Sz such that elongated
particles minimized self-interaction due to long-range
hydrodynamic interactions, see Table 1. In addition,
we included two hard, impenetrable no-slip walls,
located at z = ±Sz/2, in order to suppress the
tendency of the system to self-accelerate [51]. For each
simulation a single solid particle is placed inside the
simulation box. It is initialized at position z0 = +Sz/4,
x0 = y0 = 0 so that it is not too close to the walls.
The number of simulation streaming and collision time
steps Nt (see Table 1) is adapted so that particles move
to a final position z0 ≈ −Sz/4. For each system we
average over many realizations, i.e. between 20 and 65,
in order to get good statistics for the measured physical
quantities.
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Figure 2. (a) Velocity V0 of the differently-shaped colloids
in the absence of polymers as a function of the colloid aspect
ratio p. (b) Friction coefficient/effective radius determined from
MPCD simulations for different colloid shapes. (c) Theoretical
prediction for the friction coefficient/effective radius for prolate
ellipsoids. Symbol/color code as in Table 1.

3. Results

3.1. Velocities: no polymers

We first determine the time- and ensemble-averaged
velocity V0 of the colloids in the absence of polymers
(ρ = 0) for all the systems listed in Table 1. In Fig. 2(a)
we show results for different particle geometries, but
keeping the driving force per effective radius F/aeff =
5kBT/a

2
0 constant. Here F is chosen rather small in

order to simulate low Reynolds number flows. We
also plot, in Fig. 2(b), the corresponding friction
coefficients, γ/aeff = F/(aeffV0).

As expected, by normalizing the driving force by a
colloid’s effective radius aeff, the velocities and friction
coefficients of all particles (spheres, ellipsoids and rods)
are approximately the same. There is, however, a
small dependence on the particle aspect ratio p = b/a
(Fig. 2(a)). One reason for the dependence of V on p
is that for ellipsoids the translational hydrodynamic
friction coefficient, parallel to the long axis of the
particles, divided by the effective radius, γtheory/aeff,
has a small dependence on the aspect ratio p [52],

γtheory

aeff
=

16πηp−
1
3

2p
1−p2 +

(2p2−1) log

(√
p2−1+p

p−
√
p2−1

)
(p2−1)3/2

. (7)

This dependence on p is illustrated in Fig. 2(c).

Simulations show the same trend for the depen-
dence of the friction coefficient on p as in the simula-
tions, i.e. a minimum for aspect ratio p = 2. However,
in the simulations, the dependence on p is stronger than
the theoretical prediction, and the absolute values of
the friction coefficients are larger than the theoretical
ones. The most likely reason for the differences is that
we do not simulate an infinite domain of fluid, but
use periodic boundary conditions for the simulations
to be feasible, which can have an impact on the ab-
solute values of the measured friction coefficients [32].
More simulations are needed to investigate this further.
However, in the following we will only consider relative,
rather than absolute trends in the velocities.

3.2. Velocities: varying the polymer density

We now add polymers to the fluid, and observe that
the velocities V of the colloids decrease with increasing
polymer density ρ. This is shown in Fig. 3, where again
we use a driving force F/aeff = 5kBT/a

2
0. In Fig. 3(a)

we plot the velocities for spheres, ellipsoids and rods
moving in fluids containing flexible polymers (kb = 0),
which all decay in a similar way. This is seen more
clearly by plotting the rescaled velocities V/V0 against
the density ρ in Fig. 3(b).

Since in Newtonian fluids the friction coefficients
increase linearly with the fluid viscosity η (see e.g.
Eq. (7)), the decrease in colloid velocity could simply
be due to the increase in viscosity with the addition
of polymers. If this is indeed the case, the velocity of
the particle should scale with the the inverse viscosity
η−1. In Ref. [48] we determined the polymer density-
dependence of the viscosity using shear-rheology
measurements. For example, for flexible polymers
(kb = 0) of length N = 12, the density-dependence
of the inverse viscosity can be fitted to the curve
η−1 = η−1

0 (1 − 4.74ρ + 7.75ρ2), which is plotted as
a black dashed line in Fig. 3(b). Thus we see that the
measured velocities are larger than those predicted by
a simple viscosity scaling. We shall show later that the
reason for the discrepancy lies in the structure of the
polymeric fluids.

We also measured the dependence of the particle
velocity on the driving force F , as shown in Fig. 3(c).
F was increased up to F/aeff = 25kBT/a

2
0, where

the velocities increase up to V = 0.065
√
kBT/m,

corresponding to a Reynolds number Re = bV/ν ≈ 0.4
(using the kinematic viscosity ν = 1.6

√
kBTa2

0/m). As
shown in Fig. 3(d), the scaled velocities V/V0 almost
collapse to a single curve showing that the driving force
indeed only has a minor effect on the mobility of the
particles. The velocities are, however, slightly higher
when using larger driving forces. As we will see below,
this is probably caused by the distribution of polymers
around the particles.
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Figure 3. (a) Time- and ensemble-averaged velocities V
as a function of polymer concentration ρ for differently-shaped
colloids moving in flexible polymer solutions (kb = 0, N = 12).
The driving force F is scaled by the effective radius aeff of the
particle: F/aeff = 5kBT/a

2
0. (b) Data in (a) with velocities

scaled by the zero polymer limit, V0. The black dashed line
shows the theoretical curve based on simple viscosity scaling.
(c) Velocities V for short rods for different driving forces F/aeff

as a function of polymer concentration ρ. (d) Data in (c) with
velocities scaled by the zero polymer limit, V0. (e) Velocities
V for spheres for different polymer flexibilities as a function of
polymer concentration ρ. (f) Data in (e) with velocities scaled by
the zero polymer limit, V0. The black dashed line is the same as
in (b). The black dotted line shows the theoretical curve based
on simple viscosity scaling for motion in semiflexible polymer
solutions. Symbol/color code as in Table 1.

Finally we contrast, in Figs. 3(e) and (f), the
velocities of spheres moving in two different polymeric
fluids, containing flexible or semiflexible filaments,
respectively. The decay of the velocity V for the sphere
moving in the semiflexible polymer solutions is stronger
than for flexible polymers. The main reason for this is
that the viscosities of the semiflexible solutions increase
more rapidly with density than those of the flexible
solutions [48]. However, again, the sphere velocities
are larger than expected from a simple viscosity scaling
based on the relation η−1 = η−1

0 (1 − 7.70ρ + 19.4ρ2)

measured for the semiflexible polymers (see the black
dotted curve in Fig. 3(f)).

Taken together, these results show that the
effective mobilities of driven spheres, ellipsoids and
rods in a polymeric fluid are larger than those expected
from modelling the fluids as a simple continuum
viscous medium. We shall now investigate the relation
between the structure of the polymeric fluids and the
particle velocities.

3.3. Flow fields

To help to understand why the colloids move faster
than expected, we measure the velocity fields around
them. It is well known that in a Newtonian fluid a
particle driven by a constant force at low Reynolds
number creates a Stokeslet flow in the far field, which
decays with distance r as r−1 [52]. These long-
range flows enable for example sedimenting particle
suspensions to interact hydrodynamically and to create
large-scale motion [53]. Details of the near-field flow
are determined by the shape of the particle.

In Fig. 4 we show the time-, ensemble- and
azimuthally averaged flow fields u(r) = unn̂ + ur r̂
around single particles driven by a constant force F =
F n̂ with F/aeff = 5kBT/a

2
0. The first column displays

the flow fields in the absence of polymers, and the
other columns the flow fields for solutions containing
flexible polymers (kb = 0, N = 12) at different volume
fractions ρ. We observe that in all cases the flow
fields show a Stokeslet-like behavior away from the
particles. In the near field there are strong tangential
flows, particularly for the more elongated particles.
In Fig. 4 the strengths of the flow fields |u| are all
normalized to the mean velocities V of the particles.
While their overall shapes do not change significantly
with increasing the polymer density, we do observe that
the scaled flow field strength is somewhat suppressed
for particles moving in high-density polymeric fluids
(e.g. right column with ρ = 0.2).

To investigate the differences of the flow fields
with and without polymers in more detail, we non-
dimensionalize the parallel flow field components un
with the corresponding particle velocity, defining ue =
un/V for the simulation with polymers, and u0

e =
u0
n/V0 for the no-polymer case. In Fig. 5(a) we plot

the distance-dependent decays of the ratio ue(r)/u
0
e(r)

measured around the equator of the particle for long
rods (b = 9a0) for different polymer densities ρ.
These results show that the flow fields in the presence
of polymers decay more quickly close to the colloid
than in the polymer-free case. This effect becomes
more pronounced with increasing polymer density.
By contrast, far from from the particle the ratio
ue(r)/u

0
e(r) levels off to a constant I indicating an r−1

scaling in all cases. Similar curves are obtained for
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Figure 4. Time-, ensemble- and azimuthally averaged flow fields
around the different types of colloid (top to bottom) moving in
fluids containing flexible polymers of different volume fraction ρ.
Streamlines are shown by blue arrows, and the background color
(red to blue) of the plot indicates the strength of the flow field
|u|.

Figure 5. (a) Decay of the ratio of the non-dimensionalized
tangential flow fields ue(r) and no-polymer flow fields u0

e(r). The
curves, for densities ρ = 0.01 (orange), ρ = 0.05 (green), ρ = 0.1
(red) and ρ = 0.2 (purple), level off to constants I (fits shown
as black dashed lines). (b) Measured apparent slip velocities
vs/V = 1 − I as a function of the normalized bulk viscosities
η/η0 of the fluids. The black dotted and dashed lines show
theoretical predictions from a two-fluid model with inner fluid-
layer thickness δ = a0 and δ = 0.5a0, respectively. Symbol/color
code as in Table 1.

the other particle shapes although for the spherical
particles the flow field ratio does not level off so
clearly to a constant. This is because of the finite
simulation box which induces recirculation flows which
are strongest for the spherical particles, see Fig. 4.

The shape of the flow field can be modelled by
introducing an apparent slip velocity vs = (1 − I)V
at the surface of the particle [54]. The slip velocities
for differently-shaped colloids are shown in Fig. 5(b)
as a function of the scaled viscosity of the polymer
solution. To understand the reasons for this effective
slip around the colloids we next study the properties
of the polymers in their vicinity.

3.4. Local polymer density and the depletion layer

Explicitly modeling the dynamics of polymers allows
us to obtain detailed information about their spatial
distribution and their conformations. In Fig. 6 we show
the time-, ensemble- and azimuthally averaged local
polymer densities, ρl, around the differently-shaped
colloids for polymer solutions of flexible filaments, and
using a driving force F/aeff = 5kBT/a

2
0.
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Figure 6. Local polymer density around different types of
particles and at different bulk polymer densities ρ. The blue
layers around the particles indicate polymer-depleted regions.
Yellow indicates polymer-rich regions in front of and next to the
particles.

Figure 7. Local polymer density for short rods at different
driving forces F/aeff for ρ = 0.2. Color code as in Fig. 6.

First, it can be seen from Fig. 6 that at high
mean polymer density ρ = 0.2 (right column) the
distribution of polymers around all the colloids looks
very similar: there is a shallow layer of fluid around the
particle (blue region) where the local polymer density
is significantly reduced. This layer is of almost constant
thickness, and in particular there is no clear front-back
asymmetry.

This changes significantly when ρ is reduced. The
thickness of the low-polymer-density layer increases,
and a relatively large polymer-poor region emerges
behind the colloids. For very small ρ (left column)
regions of enhanced polymer density in front of and
next to the particles also appear. The reason for this
is that polymers are pushed forward by the moving
colloid, leading to an enhanced polymer density in front
of the particle. This then tends to get pushed sideways
leading to the polymer-rich regions at the side of the
colloid. As the polymers are displaced the moving
colloid leaves a polymer-poor area behind, since the
polymers need time to diffusively re-enter this region.

For F/aeff = 5kBT/a
2
0 these effects do not

occur at high densities because polymer diffusion and
interactions quickly remove any gradients in polymer
density. However using higher driving forces, F , can
lead to significant polymer-poor regions behind the
particle even at higher polymer densities, as shown in
Fig. 7 for ρ = 0.2. The length of the polymer-poor
region increases with increasing F , as the advective
transport of the particles becomes faster than the
diffusion of the polymers. This effect could contribute
to the small differences in the transport velocities at
different driving forces, see Fig. 3(d).

Finally, the reason for the low-polymer-density
layer around the particle is the finite size of the
polymers. At low polymer densities polymer depletion
layers at surfaces are of the order of the radius of
gyration of the polymers [55]. This is also the case for
our polymers (N = 12) where the radius of gyration is
approximately rg ≈ 2a0: at very low polymer densities
(left column of Fig. 6), this is the order of the size of the
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Figure 8. Local polymer densities ρl normalized by the bulk
densities ρ. Differently-shaped colloids at polymer densities (a)
ρ = 0.05 and (b) ρ = 0.2. Colloidal spheres in flexible and
semiflexible polymer solutions at polymer densities (c) ρ = 0.01
and (d) ρ = 0.2. Symbol/color code as in Table 1.

depletion layer. At higher densities polymer-polymer
interactions lead to configurations where the monomers
are much more uniformly distributed around the
particle leading to a smaller depletion layer thickness.

A more detailed representation of the polymer
distribution around the equator of the colloids is shown
in Fig. 8. From Fig. 8(a) we can see that at relatively
low bulk polymer density ρ = 0.05 the polymer density
very close to the particle is zero, which means that
the local fluid viscosity there is simply η0, the fluid
viscosity for the no-polymer case. Then the density
of polymers increases gradually, and in a similar way
for all particles considered, to eventually reach the
bulk plateau. The depletion layer thickness, defined
as the distance from the particle where the polymer
density has dropped to half its value, δ = r(ρl/ρ =
0.5) − a, is here around δ ≈ a0 and hence for ρ =
0.05 already smaller than the radius of gyration. For
higher polymer densities the depletion layer thickness
decreases, as shown for the highest density ρ = 0.2 in
Fig. 8(b). Here δ ≈ 0.5a0, which is the radius of a
monomer. This is what we expect at high densities,
where dense polymer solutions are expected to arrange
uniformly due to polymer-polymer interactions, and in
our coarse-grained model the monomer size defines the
depletion thickness. Again, this is very similar for all
the different colloids considered.

We do, however, see an effect of the type of
polymer on the depletion layer. To show this, we
compare results for motion in flexible (kb = 0) and
semiflexible (kb = 12kBT ) polymer solutions. While
for flexible polymers the radius of gyration is a good
measure to estimate the depletion layer thickness at
low densities, semiflexible polymers create a smaller
depletion layer, comparable to the monomer size, see
Fig. 8(c). At high densities the thickness is again
comparable, as shown in Fig. 8(d), since it is now
determined by the monomer size for both the flexible
and semiflexible cases.

3.5. Other effects

So far we have seen that the polymer distribution
close to the driven particles is clearly non-uniform.
We also checked other local polymer properties around
the particles, such as the local aligning and stretching
of the polymers. However, because we mainly use
rather small driving forces, F/aeff = 5kBT/a

2
0, the

local polymer properties around the particle are not
changed significantly.

For larger F we do see some polymer stretching in
front of the particle. In order to quantify the degree of
stretching of the polymers, we determine the gyration
tensors

gij =
1

N

N∑
k=1

∆rk,i∆rk,j (8)

for all polymers, at all times and for all different
simulation runs, where k is the polymer bead index,
and i and j indicate Cartesian components of the
relative vector ∆rk = rk − rc with rc being the center
of mass of the polymer. We then compute the local
gyration tensors around the particle, averaged over
time, ensembles and azimuthal angles,

Gmn(r, z) =
〈
Ami(n̂)gijA

T
jn(n̂)

〉
(9)

where the transformation matrix Ami depends on the
instantaneous particle orientation n̂(t) and transforms
the individual gyration tensors gij to a coordinate
system where the particle orientation n̂(t) is the
first basis vector. In Eq. (9) we averaged over all
gij calculated from polymer beads located within
radial distances r and r + δr, and within longitudinal
distances z and z + δz from the center of the
particle. This allows us to not only compute the
local eigenvalues λ2

1(r, z) < λ2
2(r, z) < λ2

3(r, z) of
Gmn(r, z), but also the averaged orientations of the
normalized eigenvectors v̂m(r, z) with respect to the
particle orientation n̂. We measure the strength of the
local stretching by the effective polymer aspect ratio
s(r, z) ≥ 1 defined by

s(r, z) =
λ1

(λ2 + λ3)/2
(10)
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Figure 9. (a) Local effective polymer aspect ratio s [Eq. (10)]
for different driving forces F/aeff. (b) Corresponding effective
local orientation angle α of the polymers (α = 0: parallel,
α = π/2: perpendicular to particle orientation.)

which is s ≈ 1 for isotropic conformations and s→∞
for highly stretched polymers.

In Fig. 9(a) we plot s for the motion of short
rods at polymer density ρ = 0.2 for different driving
forces F . We can see that polymers get stretched
mainly at the back and in front of the particle, and
this effect increases with F . However, the overall effect
is rather small for all forces (s . 1.5). In order to
see how polymers align with respect to the particle
orientation n̂ we compute the local angle α between
n̂ and the eigenvector v̂1 corresponding to the largest
eigenvalue λ2

1 which is in our transformed coordinate
system simply α = arccos |v̂1,x|. In Fig. 9(b) we can

clearly see that in front of the particle the polymers
become oriented perpendicular to the particle due to
the moving particle compressing these polymers. In
contrast, polymers are aligned parallel to the particle
at the back because the polymers gain extra space to
move in the direction of the particle orientation.

3.6. Two-fluid model

Our results suggest that it might be possible to
represent the fluid around the colloids using a two layer
model. This comprises an inner layer of thickness δ
which is essentially polymer-free, with viscosity η0, and
an outer region representing the bulk polymeric fluid,
with viscosity η. In order to see whether such a two-
fluid model can be used to explain the dependence of
slip-length on viscosity and the discrepancy between
the measured particle velocities and a simple viscosity-
scaling approach (Fig. 2(d)), we employ a two-fluid
model for spheres discussed in Refs. [26,27]. We use the
bulk viscosities η and no-polymer viscosity η0 obtained
from MPCD simulations [48].

For translating spheres with radius a this model
can be solved exactly [26,27]. It can be shown that the
flow fields decay quickly within the inner layer, and as
r−1 in the bulk region, and that the ratio of the flow
fields with and without polymers level off to a constant.
This agrees with the numerical results in Fig. 5(a).
Depending on the depletion layer thickness δ and the
viscosity ratio η/η0 the apparent slip velocity vs at the
surface of the particle can be calculated as [27,48]

vs/V = 1−
[
η/η0(1 + r3

s/a
3) + r3

s/a
3
]−1

(11)

where rs = a + δ. In Fig. 5(b) we show the
solutions of Eq. (11) for δ = a0 (low-density estimate,
black dotted line) and for δ = 0.5a0 (high-density
estimate, black dashed line). We can see that this
simple two-layer model indeed captures the measured
apparent slip velocities qualitatively, and that even
quantitatively the simulation results are in good
agreement. Deviations from the theoretical curves are
expected because the crossover between the inner and
outer regions is smooth in the simulations, but sharp
in the analytic model.

The authors of Refs. [26,27] also provide a formula
for the velocity of the sphere in the presence of
the depletion layer. In Fig. 10 we show how the
measured velocities of the spheres, ellipsoids and rods
depend on the viscosity of the fluids, and compare
the numerical results to the theoretical predictions
[26, 27] using a depletion layer thickness δ = a0

(black dashed line). Although we do not find perfect
quantitative agreement with the theory, the two-
fluid model matches our results much better than
simply assuming that the colloid velocity is inversely
proportional to the fluid viscosity (red dotted line).
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Figure 10. Velocities, V , of the differently-shaped colloids
scaled by their respective velocities in a solution with no
polymers, V0, as a function of scaled fluid viscosity, η/η0. The
black dashed curve shows a theoretical estimate which includes
the effect of a finite polymer depletion layer around the particle.
The red dotted curve shows the theoretical velocities when the
depletion layer is neglected. Symbol/color code as in Table 1.

4. Summary

We have performed coarse-grained hydrodynamic
MPCD simulations of driven spheres, ellipsoids and
rods moving in explicitly modeled polymer solutions.
We first determined how the average particle velocities
depend on particle shape, polymer densities, driving
force and polymer type. We then measured the flow
fields and local polymer density around the particles.
Our main finding was that polymer-depleted regions
close to the particles are responsible for an apparent
tangential slip velocity. The thickness of the polymer
depleted layer depends on both the density and type
of the polymers. The depletion layer accounts for
the measured flow fields and particle velocities, which
we capture by a simple model that assumes two
layers of different viscosities. We further showed that
at sufficiently strong driving forces polymers become
stretched and oriented perpendicular to the particle
orientation in front of it, and parallel behind it.

Interestingly, there is little difference in the results
for spheres, ellipsoids and rods, probably because
we have chosen the same semi-minor axis a for all
particles. Varying a will be of interest in future work.
Moreover, while we performed simulations using simple
polymeric fluids, it would be interesting to look for
possible effects of shear thinning when using longer
polymers, or elasticity if the polymers can create a
large number of physical crosslinks.
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