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Equilibrium structures of anisometric, quadrupolar particles
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We investigate the structural properties of a two-dimensional system of ellipsoidal particles carrying
a linear quadrupole moment in their center. These particles represent a simple model for a variety
of uncharged, non-polar conjugated organic molecules. Using optimization tools based on ideas of
evolutionary algorithms, we first examine the ground state structures as we vary the aspect ratio of
the particles and the pressure. Interestingly, we find, besides the intuitively expected T-like configu-
rations, a variety of complex structures, characterized with up to three different particle orientations.
In an effort to explore the impact of thermal fluctuations, we perform constant-pressure molecular
dynamics simulations within a range of rather low temperatures. We observe that ground state
structures formed by particles with a large aspect ratio are in particular suited to withstand fluctuations
up to rather high temperatures. Our comprehensive investigations allow for a deeper understanding
of molecular or colloidal monolayer arrangements under the influence of a typical electrostatic inter-
action on a coarse-grained level. © 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941585]

® CrossMark
¢

I. INTRODUCTION

In recent years there is increasing interest in under-
standing the film morphologies of anisotropic, conjugated
organic molecules at inorganic surfaces. A prime example is
systems of optically active molecules at inorganic surfaces;
these so-called hybrid inorganic/organic systems (HIOSs)
represent a very promising material class in optoelectronics.'™
Typically, the corresponding organic molecules are strongly
anisotropic in shape and are characterized by complex charge
distributions, often dominated by a quadrupole moment.’
By manipulating the orientational structure of such organic
layers, it is possible to tune the efficiency of the charge carrier
transport® and thus to optimize the efficiency of the hybrid
system. Somewhat earlier, organic molecules at interfaces
have attracted attention in the context of so-called Langmuir
monolayers, that is, two-dimensional (2D) films of typically
amphiphilic molecules constrained to a liquid-gas interface.”*8
Again, the orientational and translational structure in such
systems can be quite complex.

From the theoretical side, a full microscopic treatment
of an organic molecular layer is still challenging, and this
holds particularly for HIOS (where the substrate is typically
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patterned). On the level of atomistic molecular dynamics
(MD) simulations, one has to consider a large number
of interactions such as atomic bonding, van der Waals
(Lennard-Jones) potentials, contributions due to bending or
torsion of a molecule (see, e.g., Ref. 9), and electrostatic
interactions. Even then, it often turns out that atomistic MD
calculations do not correctly predict the arrangement of several
particles, one main reason being the insufficient treatment
of polarizability effects.! An example that demonstrates
this issue is the quadrupolar molecule benzene, where a
representation via atomic point charges'! or multipoles'”
fails to reproduce the corresponding dimer configuration.
This suggests to employ quantum chemical approaches
to evaluate the electronic structure of the entire system,
instead. However, at the moment, this level of complexity
is computationally far too demanding, especially at finite tem-
peratures.

Given these difficulties, the goal of the present paper is
to understand generic aspects of the structural behavior of
quadrupolar, anisotropic molecules at interfaces based on a
coarse-grained model. Specifically, we investigate a 2D many-
particle system composed of ellipse-shaped particles with an
embedded, axially symmetric quadrupole tensor (higher-order
multipoles are neglected). The quadrupole is oriented along
one of the ellipsoidal axes as it is the case, e.g., in benzene!?
or naphtalene, whose quadrupole tensor nearly has axial
symmetry.'* We further assume that the center of the particles
is confined to a 2D plane and that the molecules are allowed
to rotate only within this plane.

©2016 AIP Publishing LLC
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Interestingly, 2D quadrupolar systems are, so far, rather
unexplored. This contrasts the situation in the 3D case,
where a considerable amount of pioneering work involving
quadrupolar particles at finite temperatures'>~!° and in the
ground state’” is available. On the other hand, there are a
number of simulation studies dealing with non-quadrupolar,
shape-anisotropic particles in 2D, examples being hard
ellipsoids,”'~>* rectangles” or hard spherocylinders.?® In
particular, the density-driven nematic-isotropic transition of
hard ellipsoids was already investigated in Ref. 24 and turned
out being continuous or of first order depending on the aspect
ratio. We also mention a density functional study?’ of 2D
systems of anisotropic particles exhibiting isotropic phases
and phases with simultaneous orientational and translational
order. Thus, the important open question to be explored in the
present article concerns the interplay of shape anisotropy and
quadrupolar intermolecular interactions.

To this end, we employ two types of numerical
calculations, that is, optimization techniques based on ideas
of evolutionary algorithms (EA) and constant-pressure MD
simulations, revealing the system’s behavior in the ground
state and at finite temperatures. To facilitate the calculations,
the non-electrostatic part of the interaction between two
molecules is modeled via a purely repulsive, relatively stiff
(but not infinitely hard) pair potential that foots on the ellipse-
like contact distance suggested by Berne and Pechukas.?®
The analytical form of this pair potential resembles an
anisotropic soft-sphere potential but has a higher exponent.?
This potential turned out to be suitable for both type of
numerical calculations. Van der Waals interactions between
the molecules are entirely neglected. Although this may seem
somewhat unrealistic for real molecules, there are several
advantages of the resulting (repulsive) potential: it reduces the
number of parameters, it allows (as we will demonstrate) for a
transferability between results at different system parameters,

p2s2s4e

- 0
L ,
t i
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and it makes it possible to establish a connection of the present
study to investigations of anisotropic colloidal particles in
confined geometry.30-3?

The remainder of this article is organized as follows. In
Sec. II, we introduce the model and the pair interactions in
detail. Section III is devoted to the methods used to calculate
equilibrium structures (at 7 = O and 7 > 0) and corresponding
data analysis methods. The resulting ground state structures
at different pressures and aspect ratios are presented in
Sec. IV A, and the corresponding finite-temperature results are
discussed in Sec. IV B. Finally, we summarize our findings in
Sec. V. Appendices A— C provide additional, complementary
information.

Il. MODEL

In our investigations, we consider a two-dimensional
system, embedded in the (x, y)-plane, where the anisotropic
particles are only allowed to rotate around the z-axis. We use
reduced units throughout, introducing parameters o7 for the
length scale, € for the energy scale, and myg for the unit of
mass.

Our particles are assumed to have an elliptic shape,
characterized by the lengths of the two main axes, o and o, ;
the indices refer to the orientation of the corresponding axes
relative to the linear quadrupolar moment to be introduced
below (see Figure 1). Defining a dimensionless shape
anisotropy parameter, k, we impose via

go
O'||=0'0\/; and o, = —

vk

that the surface area of our particles is independent of the
actual value of . The isometric case of a disc is recovered for
k=1.

FIG. 1. Taken from Ref. 33. Top-left
panel: top and side views of a sim-
ple organic molecule shown here is
para-terphenyl (C;gH;4), which is com-
posed of three benzene rings. Molecules
of this type show a strong anisometry
and feature a complicated charge dis-
tribution. Top-right panel: simple or-
ganic molecules (as shown in the top-
left panel) are modeled in this contri-
bution as soft ellipsoids with an em-
bedded quadrupole moment. Due to the
high degree of symmetry of the un-
derlying model, the quadrupole mo-
ment is assumed to be linear. Bot-
tom panels: schematic view of our soft,
[ anisometric particles carrying a linear
quadrupole moment (visualized by the
double-arrow) with « > 1 (left panel),

g 0]
oL
—_—
a0
—_

o1

k=1 (center panel), and x <1 (right
panel). 0o, o, and o, are defined in
the text.
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The interaction between two-particles (with indices i and
J) can be split into a short-ranged, anisotropic repulsion,
Vielr;;,6;,0;), and a long-ranged potential, Vi (r;;,@;,1;); the
latter one stems from the interaction of the linear quadrupoles
that the particles carry. We define the distance r;; = |r; — 1]
between the centers of the particles and further £;; = r;;/r;;.
The 0; and 0; are the normalized orientation vectors of the
respective linear quadrupolar moments. Within our model, the
shape of the particle is the same for « and 1/«, while the
respective orientations of the embedded quadrupole moment
are perpendicular for the cases x and 1/« (see bottom panels
of Figure 1). Consequently, by choosing values of « both
smaller and larger than unity, we are able to consider these
two orientations of the quadrupolar moment within the same
model.

With the above vectors at hand we introduce

a:ﬁi-f‘ij bzﬁj'f‘ij CZﬁ,"ﬁj. (1)

For the short-range contribution of the inter-particle
interaction (subscript “sr”’), we use an anisotropic, repulsive
potential: it has the simple functional form of an inverse power
law (IPL) interaction, while its dependence on the connecting
vector, r;;, and on the orientations of the quadrupolar

moments, @; and 0, is inspired by a Gay-Berne potential,**

O-(rij,ﬁiaﬁj)] ' ?)

Valrj, 0;,05) = 4€(l'ij,ﬁi,ﬁj)[ —
ij

here

€(r;;,0;,0;) = €9 = const., 3)

+ b P 2

O—(rij’ﬁisﬁj) =05 1- l (a ) + (Cl ) ,

2| 1+ xc 1- yc
4
k-1

X= K+1 &)

The electrostatic part of the inter-particle interaction is based
on linear quadrupole moments, for which the quadrupole
tensor,® Q, becomes in its eigenbasis

Ox O 0
Q=| 0 0, 0
0 0 -0xx—0yy
-1/2 0 0
=0 0 -1/2 o], (6)
0 0 1

with Q being the strength of the moment.
The interaction between two linear quadrupole moments

can be written as!'®%
1 3Q°
2 & sy
Vlr(Q srij’ui,uj) - 477'5me§
x [1 - 54> = 5~ 15a°b* + 2(c - 5ab)’| ,

(N

with a, b, and c defined above and &, being the vacuum
permittivity. Even though the interaction decays slower with
the distance (i.e., ~1/7°) than, e.g., van der Waals interactions

J. Chem. Phys. 144, 074504 (2016)

FIG. 2. Typical arrangement of isolated quadrupolar particles with weakly
anisometric shape (i.e., k close to unity), induced by the fact that neighboring
particles tend to arrange in a mutually orthogonal orientation.

(~1/r% we can still calculate inter-particle energies with
sufficient accuracy via a real-space lattice sum. Here we
have used a cutoff radius R.,/o9 = 30 for both, electrostatic
and repulsive interactions. The interaction of two linear
quadrupoles depends on their respective orientations. In
contrast to dipoles, which tend to line up head-to-tail, isolated
linear quadrupoles prefer the so-called T-configuration for «
close to unity (see Figure 2). A more detailed discussion of the
impact of shape anisotropy on the two-particle arrangement
with a minimal electrostatic energy is given in Appendix A.
Throughout, our numerical calculations were performed
in the NPT-ensemble, where the relevant thermodynamic
potential for vanishing temperature is the enthalpy, H,

H=E+PSy; )

here E is the internal energy, P is the pressure, and Sy is
the area occupied by the system. Further, we introduce the
temperature of the system, 7.

Based on the scales of length (o), mass (mgp), and
energy (eg), the quadrupole strength, Q2, the pressure
P, the temperature 7, and the time ¢ are expressed
via their respective reduced units, (Q*)> = Q?/ (47rspm0'850),
P = PO'(Z)/E(), T* = kgT /ey (with kg being the Boltzmann

constant) and 1* = t//o-3mo/ €.

lll. METHODS AND DATA ANALYSIS

In our approach, we investigate in a first step the self-
assembly scenarios of our particles at zero temperature
(i.e., the ground state configurations). This information
helps us to classify archetypical particle arrangements (each
characterized by a particular spatial and orientational order),
which, in turn, help us to understand the strategy of the
particles of how to assemble in the energetically most
favorable manner. For these investigations, we employ an
optimization tool based on evolutionary algorithms, detailed
below.

In a second step, we take advantage of these ground state
configurations and use them as starting configurations in MD
simulations, performed at small, but finife temperatures. These
investigations provide information on the thermodynamic
stability of the ordered phases.
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A. Evolutionary algorithms

In our effort to identify ground state configurations of our
systems, we use an optimization tool based on ideas of EAs.3
EAs are heuristic approaches designed to search for global
minima in high-dimensional search spaces and for problems
that are characterized by rugged energy landscapes.

In an effort to be compatible with the requirements of
an NPT-ensemble, we introduce in our approach a unit cell
of variable area and shape which creates (together with its
periodic images) a system of infinite extent. In the desired
configuration (the so-called ground state configuration),
particles are located and oriented in this cell in such a way
as to minimize the internal energy of the system, which at
vanishing temperature is equivalent to the enthalpy.

We initialize the algorithm by creating a set of
configurations where particles are located in the cell at random
positions and have random orientations. These arrangements
are graded by their respective fitness value, a quantity that
provides evidence on how suitable this configuration is to solve
the optimization problem. Since we are interested in finding
ground state structures, a high fitness value of a particular
configuration corresponds to a low value of the enthalpy per
particle.

Then we iteratively use existing particle arrangements
to create new ones by applying one of the two following
operations: crossover and mutation. In the former one, we
first select two configurations where the choice is biased by
high fitness values of the two configurations. Characteristic
features of both particle arrangements (such as lattice vectors,
particle positions, and particle orientations) are then combined
to form a new configuration. The mutation operation, on
the other hand, introduces random changes to a randomly
chosen configuration, such as moving or rotating an arbitrarily
chosen particle or changing the lattice vectors. Typically
2000 iterations are required for a particular state point until
convergence towards the global minimum has been achieved.

Our implementation of EAs is memetic, i.e., we
combine global and local search techniques: each time a
new configuration has been created with one of the two
above mentioned EA operations, we apply the L-BFGS-B*’
algorithm which guides us to the nearest local minimum.

This algorithm has been applied successfully for a broad
spectrum of systems, both in two and three dimensions
(see, for instance, Refs. 38—43). Within the context of the
present contribution, it should also be mentioned, that a
suitable extension of the formalism is also able to cope with
long-ranged interactions, as they are encountered in charged
systems (see Refs. 44 and 45).

For the present contribution, we have performed with our
EA approach computations for 211 evenly spaced values of k €
[0.4,2.5] and for several combinations of (Q*)? € {0.2,2,20}
and P* € {0.1,1,10}. Due to computational limitations, we
have considered unit cells that contain up to twelve particles.

B. Molecular dynamics simulations

In order to investigate structural changes of our system
at finite temperature, we perform MD simulations at constant
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pressure and temperature for an ensemble of N = 840
particles. To this end, we use the Berendsen weak-coupling
scheme,*® where the classical Newtonian equations of motion
are supplemented by terms representing the coupling to a
heat- and a pressure-bath.

In the following, we first introduce the translational
equations of motion proposed by Berendsen et al.*®
specializing to the case of a two-dimensional system.

Considering a particle with index i (i = 1,...,N) one has
K
i’i =V, + —(P — E)l‘[, (9)
P
vi=F; + ( T 1) v (10)
moVv; = ki +m - i>
0 OZTtrans Tevans
. K
b= | 2@ )b, an
P

where the vectors b, (& = 1,2) define the simulation box and
its shape.

In the above equations, the dot represents a time-
derivative. Further, r; and v; denote the position and the
velocity of particle with index i, respectively; F; is the force
on particle i with mass mgp, and K is the compressibility.
The pressure tensors, £ (actual pressure) and P (target
pressure), are defined below. Further, 7., is the actual
kinetic temperature, kg7qans = D, m,-vl.z/ [2(N = 1)], where the
denominator 2(N — 1) represents the 2N translational degrees
of freedom minus two constraints due to momentum
conservation in each spatial dimension. To ensure this
conservation during the numerical integration, we set the
total momentum to zero every 100 time steps.

The (time) constants Tyans and 7p determine the speed of
relaxation of 7i,ns and P towards their respective target values
defined by the bath. Specifically, the corresponding coupling
equations read

. T — Trans . P-P
Toans = ——— P =—=, (12)
Ttrans P

where the pressure tensors are defined as

1 1
P=— i ®V; + i @ F;; P=-P1.
=725, Zmov v i,;jrj J =52

13)

Here, ® denotes the dyadic product of two vectors, Sy stands
for the area of the simulation cell, 1 is the unit-tensor, and F;;
is the force on particle i exerted by particle ;.

To describe the rotational motion of the particles,
Egs. (9)—(13) are supplemented with the following differential
equations for the angular velocity, w;, of particle i,

fi,»za’)ixﬁ,-+a),»><ﬁ,~, (]4)
1 T
Ty =M+ — [— - 1) w;. (15)
2Tr0t (7;0l )

Here, M; and [ are the torque on particle i and the
corresponding moment of inertia of particle i, respectively;
x denotes the vector product. The kinetic temperature for the
rotation is defined as kg7t = D; Ia)?/N . This temperature is
controlled in analogy to Eq. (12).



074504-5 Heinemann et al.

To solve the translational equations of motion, i.e.,
Egs. (9)-(13) we use a modified leap-frog integrator as
proposed in Ref. 46. For the solution of the rotational equations
of motion, Egs. (14) and (15), an analogous procedure is
performed (see Ref. 47).

To initialize the particle positions in our system, we use
the unit cells obtained from the ground state calculations in the
preceding investigations (see Subsection III A). Specifically,
we take for each («-dependent) ground state the respective unit
cell and arrange copies of this cell such that the simulation
cell has a minimal circumference. For this simulation cell
(which is now defined by the simulation box vectors b; and
b,) periodic boundary conditions are applied. The pair forces
F;; and torques M;; are truncated at R., = 607 and are then
shifted in order to make them vanish smoothly.

The MD calculations have been performed at several
values of the reduced temperature 7, that is, 7" = 0.1,
0.2,...,1.6. In our simulations, we used a time increment
At* = 0.001361 72 (corresponding at a macroscopic level to
At = 2 fs). An adequate choice of the time step is imposed
by the mass of the particles, for which we have assumed
the mass of benzene, my = 78u. Each simulation extends
over 210000 time steps. During the first 20000 MD steps,
the target temperature is gradually increased from 7™ =0
towards the respective target value. Structural quantities are
then extracted only during the final 10000 time steps of the
simulation. The values for the temperature- and pressure-
coupling constants Tyans, Trot, and 7p were chosen to be 80 time
steps. Of course, the actual volume change of the box is also
influenced by the compressibility; its reduced, dimensionless
counterpart, K* = K méo-é/eo, is set to 0.01. We assume the
mass distribution within the particles to be homogeneous
and thus obtain for the dimensionless moment of inertia
I"=0.25(k+ %)

C. Structural analysis — Order parameters

In order to quantify both the positional and the
orientational order of the particles, we introduce three different
sets of order parameters.

(1) The positional order can be quantified via
two-dimensional bond-orientational order parameters
(BOOPs),*® introducing, in addition, weight factors*’
that are related to the side lengths of the Voronoi polygon
around each particle,

S

JEN;

here (j € N;) indicates that particle j is a nearest neighbor
of particle i and /;; is the length of the side of the
Voronoi polygon that separates the two particles. ¢;; is
the angle enclosed by the bond between particles i and
Jj and the reference axis, which we choose as the x-axis.
For the parameter n, we have chosen the values 4 and 6,
highlighting thus via ¥4 or ¥ four- or six-fold symmetry,
respectively. While BOOPs are calculated for only the
best configuration at vanishing temperature, averages
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over several configurations are taken in MD simulations,
indicated by the brackets in Eq. (16) and in the following.

(i) An obvious candidate for quantifying the orientational
order of the particles is the nematic order parameter S,
which is introduced via the tensor order parameter T,
defined as

1=2<%Zﬁi®ﬁ,~>—1.

S is then simply the positive eigenvalue of the tracless
tensor T, which can easily be calculated as

S= T2 +T2,

The eigenvector associated with S is called the director d
and indicates a preferred orientation in the configuration.
Note that S is always positive, except in the case that
all elements of T vanish: then no preferred direction is
present in the system.

A different way of how to measure the orientational
order is via the parameter 3, defined as

1w 1
/3=<—Z— > li,-|(ﬁ,--ﬁ,~)|>.
N i=1 2jenilij FEN;

(iii) In addition, a variety of order parameters combining
positional and orientational order can be defined. An
example of such an order parameter, which has been
used in a previous contribution’ is

(IS | o
a:<ﬁzz—l Z l[j|(ll['l‘[j) +(llj'l'[j) |>
i=1 SIENIP e,

Concluding, we emphasize that orientational order refers to
the orientation of the particles; the orientation of the linear
quadrupolar moment is then imposed by the value of «:
if k > 1, then the orientation of the moment is parallel to
the main axis of the particles, while for « < 1, these two
orientations are perpendicular to each other.

IV. RESULTS
A. Ground state configurations

In our discussion of the ground state configurations, we
first present the different structural archetypes that we could
identify with our EA-approach. We then present the diagram
of states: it provides information on the k-ranges where the
respective structures are the energetically most stable ones;
we further discuss how the thermodynamic properties and the
order parameters of our systems vary over a representative
range of «.

1. Structural archetypes

a. Structures with one preferred orientation. For k-
values both considerably larger or smaller than unity (i.e., by
a factor of ~2), the particles tend to align parallel to each
other in case of strong anisotropy: they accomplish this
by forming tilted rows, characterized by a high density of
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FIG. 3. Taken from Ref. 33. Snapshots of ground state configurations with one preferred particle orientation. Left panel: P-configuration ((Q*)>=0, P* = 1, and
k =1.5). Center panel: PD-configuration (Q*)?=2, P*=1, and k =2.1). Right panel: PD-configuration (Q*)?=2, P*=1, and k =0.4).

particles along these lines; these arrangements are denoted
as parallel displaced-configurations (“PD;” see Figure 3).
Since quadrupolar particles avoid a head-to-tail arrangement,
neighboring rows repel each other, inducing thereby large gaps
between these lanes; the parallel offset between neighboring
rows can be very sensitive to small changes in «, leading
to a slight modulation of the BOOPs as functions of «
(to be discussed below). An interesting special case of this
structure is observed for a vanishing quadrupolar moment
(i.e., (Q*)? = 0), where particles form a distorted hexagonal
lattice, denoted as the parallel-configuration (“P;” see top left
panel of Figure 3).

b. Structures with two preferred particle orientations.
Here the preferred structural arrangements are throughout
herringbone-configurations (“HB”) where particles form
alternating, parallel lanes, each of them being characterized by
a specific particle orientation: in Figure 4 particles pertaining
to different lanes are colored red and blue, respectively. The
relative orientation between neighboring particles depends in
a highly sensitive manner on «.

Apart from two special cases (that are encountered for «-
values very close to unity and which will be discussed below)
two different versions of the HB-configurations emerge from
a closer analysis of the obtained structures.

FIG. 4. Taken from Ref. 33. Snapshots of ground state configurations with two preferred particle orientations. Different colors indicate different particle
orientations. Left column: top panel — Tyg-configuration ((Q*)?=2, P*=1, and k = 1), bottom panel — Tpey-configuration (0**=0.2, P*=10, and k = 1).
Center column: top panel — HBgense-configuration ((Q*)? =2, P*=1, and « = 1.38), bottom panel — HBense-configuration ((Q*)?>=2, P*=1, and  =0.58).
Right column: top panel — HBj,0se-configuration (0*?=2, P*=1, and k = 1.83), bottom panel — HB)go5e-configuration (Q*?=2, P*=1,k=0.48).
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(1) For k-values somewhat closer to unity, we observe a rather
dense structure, which we denote HB geps-configuration
(see panels in the central column of Figure 4).

(i) For «-values that differ more strongly from unity,
particles arrange in densely populated rows of alternating
orientation (see panels in the right column of Figure 4).
Since neighboring rows repel each other, this structure
has a lower overall density which we therefore denote as
HBloose~

The two special cases of the HB structure mentioned above are
observed for k-values very close to unity where neighboring
particles prefer strict mutual orthogonal orientations with
respect to their nearest neighbors. (i) For large (Q*)*—and small
P*-values, a perfect arrangement of mutually orthogonally
oriented particles with an underlying square pattern can
be observed, denoted as the square T-configuration (*“Tgg;”
see left panel of Figure 4). (ii) Further, a closely related
arrangement has been identified which is now based on an
underlying hexagonal pattern; it is denoted as the hexagonal
T-configuration (“Tpex;” see bottom left panel of Figure 4);
for this particular configuration, a mutually perfect orthogonal
orientation of nearest neighbors can only be realized for x = 1.

c. Structures with three preferred particle orientations.
A very interesting phenomenon observed in our system is
the occurrence of structures where particles arrange in three
preferred orientations, characterized by a vanishing nematic
order parameter S.

The spatial particle arrangement is here — irrespective
of the values of Q" and P* — reminiscent of a trihexagonal

tiling,’! consisting of regular hexagons that are connected
by triangles; we thus denote it as the “TH”-configuration
(see Figure 5 where also the hexagons and the triangles
are highlighted). Throughout, the relative angle between the
orientations of neighboring particles is n/3, reflected in the
order parameter which assumes a value of S = cos*(r/3)
= 1/4 (see Figure 7).

We note that the occurrence of the TH-configuration
strongly depends on the choice of (Q*)? and P*; in some
cases, this particle arrangement is not observed at all (see
Figure 8). In contrast, variants of the HB-configuration can
almost always be observed in some range of « (see discussion
below).

d. More complicated structures. Using the EA-approach,
we also identify more complicated structures, not conforming
to the mechanisms described above. These structures require
a larger number of particles per cell and turn out to be stable
only within very small ranges of « (see Subsection IV A 2).
While we observe several different variants of such particle
configurations, they share a common feature, namely, a mesh-
like lattice, where chains of particles undulate back and forth
(see Figure 6). We denote them as branched structures (“B”).

2. Diagram of states

We now discuss the diagram of states which summarizes
the occurrence of the previously identified archetypes of
ground state configurations of our system for selected values
of (Q*)* and P* as we vary k. Since most of the interesting
features of our systems can already be captured in the diagram
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FIG. 6. Taken from Ref. 33. Snapshots of more complicated ground state configurations, so-called B-configurations. Different colors indicate different particle
orientations. Left panel: (Q*)?>=2, P*=1, and k = 1.66), center panel: ((Q*)> =20, P*= 10, and « = 0.52), right panel: ((Q*)*>=2, P*=0.1, and k =0.53).
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FIG. 7. Taken from Ref. 33. Reduced enthalpy per particle (H*/N; left
vertical axis) as well as filling fraction 77 (as defined in the text) and different
order parameters (for their definitions see Subsection III C) of the observed
ground state configurations (right vertical axis) as functions of « (as labeled)
for (Q*)?=2 and P*=1. Note the logarithmic scale along the k-axis. The
horizontal bar above the panel specifies the x-range where the respective
ordered structural archetype is the energetically most favorable one via the
following color code: Tyq (green), HBgense (red), HBjoose (orange), PD (blue),
TH (yellow), B (grey).

of states obtained for (Q*)> =2 and P* = 1, we focus from
now onwards on this particular set of parameters: we present
data for the enthalpy and for a selection of appropriate
order parameters introduced in Subsection III C that help
to identify the respective structures. The filling fraction 7,
which is also displayed in the following figures, is defined as
n= NJTO'(Z)/4/S().

At this point, we remind the reader that the shape
(and thus the orientation of the particles) is invariant under
the transformation « <> 1/«x while the relative orientations
of the quadrupolar moments for the cases « and 1/« are
mutually orthogonal: with this symmetry in mind, we can
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FIG. 8. Taken from Ref. 33. Reduced enthalpy per particle (H*/N; left
vertical axis) as well as filling fraction 77 (as defined in the text) and different
order parameters (for their definitions see Subsection III C) of the observed
ground state configurations (right vertical axis) as functions of « (as labeled)
for (0*)?=0.2 and P*=0.1. Note the logarithmic scale along the x-axis.
The horizontal bar above the panel specifies the k-range where the respective
ordered structural archetype is the energetically most favorable one via the
following color code: Tsq (green), HBgense (red), HBjoose (orange), PD (blue),
TH (yellow), B (grey).
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easily disentangle the impact of (Q*)> and P* on the structure
formation by comparing the relevant physical properties for
the cases x« and 1/k. These properties are displayed for
(0")? =2 and P* =1 in Figure 7 along with a color-coded,
horizontal bar (above this panel) which indicates these «-
ranges where the respective particle configurations are the
energetically most favorable ones.

On a qualitative level, we observe that the enthalpy curve
is continuous over the entire investigated x-range; however,
it shows kinks at particular values of the aspect ratio which
provide a first evidence for the occurrence of discontinuous
transitions between the ground state configurations. The
specific enthalpy, H*/N, shows a pronounced local minimum
at k=1 (i.e., for circular particle shapes): here the T-
configuration is dominant, verified by the fact that in this «-
region ¥4 = 1 and ¥ = 0. In addition, we observe S = 0 and
B =0 = cos*(m/2), indicating thereby a relative orthogonal
orientation of neighboring particles. In contrast, for more
anisometric particle shapes (i.e., small and large x-values),
the enthalpy rapidly decays to rather small values; actually
H tends to minus infinity for «k - 0 and « — oo as the
quadrupoles start to overlap and the repulsive soft core shrinks
as o, — 0. For small and large «-values, the formation
of parallel rows is energetically most favorable and PD-
configurations are observed. Here the nematic order parameter
S is the appropriate quantity to characterize the emerging
structure: indeed, S assumes in these k-regions the value 1,
indicating that a single orientation prevails.

In contrast, for the two intermediate «-ranges, where
the enthalpy assumes local maxima the ground state
configurations for « and 1/« are distinctively different; for
these «k-values, we observe the formation of more complex
structures, reflected by a rather intricate variation of the
different order parameters with «: (i) Increasing first « beyond
the region where the T-configuration is stable, the system
changes — after a very narrow k-region where the HB gepse-
structure occurs — via a discontinuous structural transition
(identified by a jump in 7) into the TH-configuration; the
latter one is characterized by § =0, Y =1, and 8 =0.25
= cos’(m/3) which provides evidence that the difference in
orientation angles between nearest neighbors is 7/3. Upon
further increasing k, we pass again a very narrow interval
where a branched structure is stable and we eventually reach —
again via a discontinuous structural transition — the HB)goge-
structure; for this configuration, none of the order parameters
assume any characteristic value. Eventually we identify for
even larger «-values the aforementioned PD-structure. (ii)
Decreasing, on the other hand, the value of k beyond the range
where the T-structure is stable, we observe HB-configurations:
first the one with the larger density (i.e., the HBgepse-Structure)
and then the HBys-structure. The shape of g (see Figure 7)
indicates that the transition between HBgenge and HBjooe (and
also the subsequent transition to the PD-structure) is of first
order, i.e., at some point the relative orientation of neighboring
particles is discontinuous.

At this point, it should be mentioned that 7 and the order
parameters do not necessarily behave in the same manner as
the system changes from one structure to the other: some
order parameters or 7 may change abruptly, indicating a first
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FIG. 9. Taken from Ref. 33. Reduced enthalpy per particle (H*/N; left
vertical axis) as well as filling fraction 77 (as defined in the text) and different
order parameters (for their definitions see Subsection III C) of the observed
ground state configurations (right vertical axis) as functions of « (as labeled)
for (0*)?>=20 and P*=10. Note the logarithmic scale along the k-axis. The
horizontal bar above the panel specifies the x-range where the respective
ordered structural archetype is the energetically most favorable one via the
following color code: Tyq (green), HBgense (red), HBjoose (orange), PD (blue),
TH (yellow), B (grey). Reprinted with permission from M. Antlanger, “Or-
dered equilibrium structures in systems with long-range interactions,” Ph.D.
dissertation (Technische Universitiat Wien, 2015).

order phase transition, while the other parameters change
continuously. As an example, we refer the reader to the
transition HByose — PD for « ~ 0.45.

Another interesting feature emerges as we compare the
curves of the order parameters shown in Figure 7 obtained
for the parameters ((Q*)?, P*) = (2,1), with the corresponding
data calculated for the parameter sets ((Q*)% P*) = (0.2,0.1)
and ((Q*)%P*) =(20,10), shown in Figures 8 and 9,
respectively. The corresponding curves reveal striking
similarities, suggesting that appropriate scaling relations of
the order parameters via the values of the quadrupole moment
and the pressure hold for the respective ground states. In
contrast (and interestingly), the enthalpy curves obtained
for the different sets of data differ rather substantially in
magnitude. We will discuss a possible background scenario
of these observations in more detail in Appendix B. There we
will show that indeed a scaling relation for the enthalpy of
a systems of hard, quadrupolar particles can be derived (see
Appendix B 1). However, it seems that the softness of our
particles — remember that we consider in this contribution
particles with a soft (albeit rather steep) core — leads to a
breakdown of this scaling law. This feature is presumably
due to the fact that a simultaneous scaling of the quadrupole
moment and of the pressure also induces a change of the
density. To take into account this effect properly, we suggest
in Appendix C 1 an empirical scaling law for the ground state
enthalpy of a system of soft ellipsoidal particles and provide
numerical evidence for its justification.

B. Results at finite temperatures

In the current subsection, we analyze the MD results that
we have obtained for all considered aspect ratios « and a
set of reduced temperatures 7*. As previously mentioned, the
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ground state configurations that we have obtained with the
help of the EA for a variety of aspect ratios serve now as
initial configurations for the MD simulations. Corresponding
snapshots for the most interesting and most representative
configurations, obtained after equilibrating the system, are
presented in Figure 10.

Before starting the investigations, it is worth to briefly
consider typical values of (Q*)?, P* in experimental systems.
As an example, we consider the quadrupolar Gay-Berne model
of benzene proposed by Golubkov and Ren.'> We use their
quadrupole strength, Qvenzene = —30.5812 x 10740 Cm?, and
their spherical diameter, oo ~ 0.307 nm (the latter value is
based on the Gay-Berne contact distance). Using the surface
tension of water (the 2D equivalent of pressure) defined
in Ref. 52, Pyater = 71.99 x 1073 Nm™! at 25 °C, we arrive at
the ratio

(Q;enzene)z/P\;ater = Q%enzene/(“'ﬂgpmo-épwaler) ~4.5.

However, since the point quadrupole approximation is
known to overestimate the interaction strength for narrow
interparticle configurations'>3* due to the singularity in Vi
[see Eq. (7)], we consider here a reduced value of (Q*)?/P* = 2
instead of 4.5. With this choice, we hope to cover not only
benzene molecules but also other quadrupolar molecules. By
identifying P* =1 with Py, we arrive at the following
energy scale €)= Pyaer03/P* = Pyueoy = 4.09 kI/mol. In
the following, we present MD simulation results for the
parameter pairs ((Q*)?, P*) = (2,1), and (4,2). We start with a
detailed investigation of the structure at (Q*)? = 2, P* = 1 and
different temperatures.

The MD simulations reveal that the structures predicted
for vanishing temperature remain stable also at low
temperature (7" = kgT /ey = 0.2, see panels in the second
column of Figure 10). As T* increases monotonously,
defects start to form (see panels in the third column of
Figure 10): the most common of these is a slight wave-
like modulation of previously straight lines. Finally, once
the temperature has been raised above a certain threshold
value (see panels in the fourth column of Figure 10), the
crystalline order is rapidly lost. The corresponding transition
temperatures depend strongly on «: configurations with x ~ 1
(Tsq-configuration) and « far from unity (PD-configuration)
turn out to be the most stable ones: in this situation, particles
can approach very closely and exert thus a strongly attractive
quadrupole-quadrupole interaction; these ordered structures
break up only at temperatures as high as 7* =1.1 and
T* = 1.2, respectively. In contrast, the rather complicated B-
configurations melt already at temperatures as low as 7" = 0.5
(with x = 1.66).

In order to investigate and to locate the transition of
the system from the ordered to the disordered regime, we
focus in the following on the reduced potential energy, E;.
and the reduced system area, S (in units of € and oy,
respectively). Figure 11 depicts Ej, and S as functions
of the reduced temperature 7* for all considered values of
the aspect ratio x. Upon increasing the temperature, Ej
progressively decreases in magnitude and finally approaches
zero, reflecting the diminishing role of particle interactions.
At the same time, the area S increases. Interestingly, we
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FIG. 10. Snapshots of equilibrated particle configurations as obtained in MD simulations for different values of k = o|/o . (along rows; as labeled) and
T*=kgT / €y (along columns; as labeled). Different colors indicate different particle orientations (see colour scheme in the inset of the top left panel). First row:
k =1 (Tgq-configuration); second row: k =1.38 (HBgense-configuration); third row: « = 1.5 (TH-configuration); fourth row: k =1.83 (HBjoose-configuration);
fifth row: k =2.1 (P-configuration). Configurations for 7* = 0 have been obtained via the EA route.

observe along this process that both E;(T*) and S;(T™) show
discontinuous changes within very small temperature intervals
for all k-values investigated; these “jumps” are found for both
quantities at approximately the same temperature. We attribute
these observations to the occurrence of a first order phase
transition. The temperatures that delimit these intervals are
marked in Figure 11 by contour lines as functions of k. Only for
« =~ 1.66, no such discontinuity in E;,(7™) could be resolved;

this fact can be related to the finite size of the temperature
grid. Intentionally, we have not evaluated the susceptibility,
since it is well established that energy fluctuations are not
correctly reproduced within the Berendsen scheme.>>-°

We now arrive at the discussion of the previously defined
BOOPs ¥, and ¥ [see Eq. (16)]; they are displayed in
Figure 12. As already shown in Figure 7, we find for all
our ground state configurations intervals in x where at least
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FIG. 11. Reduced, dimensionless potential energy, E;ol (left panel), and dimensionless system area, SS (right panel), as functions of the temperature, 7", and
of the aspect ratio, . The color code of these quantities is shown on the right hand side of each panel. Each symbols represents a state point investigated in an
MD run; symbols are connected by lines as guides to the eye. The contour lines are explained in the text.

one of the two parameters does not vanish. Considering
now the temperature dependence of these quantities, we
observe for all k-values investigated a discontinuous change
of both ¥, and ¥y (if not zero in the ground state) at exactly
the same temperatures where a discontinuous change in S
was observed. To analyze the structure of the system at

S

finite temperatures on an even more quantitative level, we
have calculated in addition various coefficients of the pair
distribution function in an expansion in terms of rotational
invariants. To be more specific, we use a two-dimensional
version of the three dimensional coefficient functions of the
pair distribution function,” i.e.,

where the y/'12!(#; ;,0;,10;) are rotational invariants. Here we
focus on the coefficients g?°(R), g?*°(R), and g?°*(R) defined
via the following two-dimensional rotational invariants:

L R Y TC TR ) o BVE L 1 WO SR
(18)

The function g°°(R) corresponds to the familiar pair
correlation function. The other functions, g2°*(R) and g??(R),
describe, in addition, a local orientational order of the particles.
Similar to 3D systems,’® we can interpret these coefficients as
follows: g??°(R) provides information about the conditional
probability density of a particle (relative to the bulk probability
density) whose orientation axis is aligned in parallel (positive
value) or orthogonal (negative value) to the orientation axis
of a considered particle; g?°2(R) describes the conditional
probability density of a particle (again, relative to the bulk
probability density) positioned along or aside the axis of a
considered particle.

In the panels of Figure 13, we present numerical results for
these three functions for k = 2.1 (see also the corresponding
snapshots shown in the panels in the bottom row of Figure 10).
For all three correlation functions, the first peak is located at
around 0.8 0: this position does not exactly mark the face-
to-face alignment of the particles (which occurs at ~0.69 o)
and thus provides evidence for a slightly shifted parallel
configuration, induced by the quadrupole (see snapshots
shown in the panels of the bottom row in Figure 10). For
T* = 1.2, we observe arapid decay of g?°(R) towards unity for
large particle distances R: the crystalline order has completely
vanished, reflected by the missing peaks for larger R-values.
Since at low temperatures all particles are oriented in the
same direction, g??°(R) is equivalent to g"%°(R); however, as
the temperature attains 7* = 1.2, we observe that for large R-
values the orientational order is lost and thus g?*°(R) vanishes
already at R =~ 207. Finally, g°2(R) oscillates around zero
in the ordered phase for low temperatures (7* < 1.2) due
to the fact that g2°(R) is — by definition — not able
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FIG. 12. Bond orientational order parameters ‘Y4 (panel (a)) and W (panel (b)) as functions of « for different temperatures 7*. The color code of these quantities
is shown on the right hand side of each panel. Each symbols represents a state point investigated in an MD run; symbols are connected by lines as guides to the

eye.

to contribute to the overall particle density. For T* > 1.2,
g?%(R) completely vanishes for large R-values (R 2 207):
obviously, a loss of orientational order occurs for 7% > 1.2.
This temperature threshold, which can be interpreted as a

T7*=0.3 =
T" =05 =
T =0.7
T =0.9
T" =11 =
T =12 -

0.5 -
(c) g**(R) A

1.5 2 25 3 35 4 45 5
R/O‘o

05 1

FIG. 13. Correlation functions g%%(R)—panel (a), g >°(R)—panel (b), and
gZUZ(R)—panel (c) for k =2.1 and various temperatures (as labeled).

melting temperature, agrees fairly well with the temperature
where the discontinuous changes in E;,(7) and Sj(T”) (see
Figure 11) and in the BOOPs (see Figure 12) were observed.
Concluding, we note that related investigations carried out
for other k-values led to analogous conclusions about the
corresponding melting temperature.

These observations motivate investigations on a melting
curve that separates the ordered from the disordered phase
as we increase the temperature. This line is displayed in
Figure 14 for all considered aspect ratios . We emphasize that
these data represent only an estimate for the true, two-phase
coexistence lines characterizing a first-order transition. For the
latter, one would also expect the occurrence of a hysteresis,
i.e., the observation of two different curves, depending on
whether the system is heated up or cooled down from a low
or a high-temperature state, respectively. We briefly come
back to this issue below. Another interesting feature of the
melting curve that can be observed is that it exhibits some
degree of symmetry in shape when exchanging « and 1/« (see
Figure 14). Of course, we would not expect full symmetry
since the electrostatic properties for the cases « and 1/« are
different (see bottom panels in Figure 1). From the data, we
can conclude that for particles with large eccentricities the
melting occurs at higher temperatures than for x-values close
to unity.

Given the large amount of numerical calculations required
to construct the melting line in Figure 14, which was calculated
for one particular set of parameters, (P*,(Q*)?), it would be
obviously desirable and helpful to have a scaling relation
at hand which allows to easily obtain (or to extrapolate)
corresponding melting lines for other parameter sets. In
Appendix B 2, we show that such a relation does indeed exist
for hard particles. This relation states that the probability to
encounter a microscopic configuration of the many-particle
system in phase space is invariant under the simultaneous
transformations Q> — uQ? P — uP, T — uT, with u being
a scaling factor. However, in this contribution, we consider
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melting

*

FIG. 14. Estimate of the melting curve
Tr";emng((Q*)2 =2,P*=1,k) that sepa-
rates the ordered phase (at low tem-

peratures) from the disordered phase
(at high temperatures); for details cf.
text. Data along on the line correspond
to results obtained for disordered state
points.

soft particles (even though characterized by a rather harsh
repulsion, see Eq. (2)). Nevertheless, as we discuss in
Appendix C 2, it is also possible for the system at hand
to provide via a suitably adapted scaling law a rough estimate
of the location of the melting line at scaled parameters.
Finally and for the sake of completeness, we now discuss
our investigations on the melting transition as obtained in a
cooling process (‘“‘simulated annealing”). The central question
that we address is whether the ground state structures can be
reproduced — at least locally — with MD simulations starting
from a disordered phase at higher temperatures. To this end,
we performed simulations at (Q*)> =2 and several values
of «k, initializing the system with random particle positions

Heating — -

15 Fa) '
® Cooling — (b) Heating

1.9 9.9 .9 9. 9.9

)0000000

gOOO (R)

1 1.5 2
R/O’o

FIG. 15. Pair correlation function g%(R) (panel (a)) for a system with
k=0.8 at a temperature 7*=0.1, pressure P* =1, and quadrupole strength
(Q*)*=2 after a melting (snapshot in panel (b)) and a cooling procedure
(snapshot in panel (c)). For the color code of the snapshots see inset in
Figure 10.
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and orientations and cooling it down gradually. The initial
pressure and temperature were set to P* =10 and 7" =5,
respectively; the initial box-shape is quadratic with a side
length of 5007. Within the first 200 000 MD steps we linearly
decreased the pressure and the temperature down to P* =1
and 7™ = 0.1, respectively. The simulations extended in total
over 410000 MD steps. For the other simulation parameters,
we refer the reader to Sec. III B. Our data provide evidence
that the predicted ground state could be obtained via this
simulated annealing process only for very few state points. In
general, the formation of ordered structures via such a process
is hampered and delayed by frustration effects, especially for
k-values far from unity, where particles encounter — due to
their elongated shapes — difficulties to rotate. As an example,
we discuss the pair correlation function g%°(R), obtained
for k = 0.8 (i.e., a value close to unity) and depicted in
Figure 15(a). We observe a coincidence in the peak positions
of g%%(R), but not in their heights. We interpret this deviation
as an artefact of the crystallite structure appearing after cooling
(see Figure 15(b) and 15(c)). This might be a consequence of
the lack of long-range order in 2D systems.

V. CONCLUSIONS

In summary, we have proposed a simple model that
mimics the essential features of elongated, organic molecules
without a net charge or dipole moment: it consists of soft
ellipsoids with an embedded linear quadrupole moment.
The preferred orthogonal arrangement of linear quadrupole
moments in close proximity to each other represents an
interesting contrast as compared to dipolar systems, where
particles prefer parallel arrangements, thus often forming
chains. The self-assembly scenarios of our system result from
a competition between the shape anisotropy of the ellipsoids
and the quadrupolar interactions.

Operating in the NPT ensemble, we have investigated
the system for numerous different sets of system parameters,
(Q)? and P*, and could identify different strategies of the
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system, depending on the shape anisotropy «. While we
always observed configurations of parallel rows of particles
for k-values far from unity, the sequence of structures
between these two limiting cases strongly depends on the
competition between the short-ranged and the long-ranged,
electrostatic contributions to the interaction. For x = 1, we
observe two different configurations with orthogonal particle
arrangement, one of them based on a square lattice, the other
closely related to a hexagonal lattice. Intermediate ranges of
k — both for « > 1 as well as for xk <1 — are mostly
dominated by two variations of the herringbone structure.
In addition, we observe for selected «-values a non-trivial
lattice, closely related to the trihexagonal tiling. In very
small ranges of k, more complicated, branched structures
can emerge. However, these turn out to be in general rather
unstable at finite temperatures, as shown in complementary
MD simulations: thus we speculate that they are metastable at
vanishing temperature.

For future work, it would be useful to extend our simple
model in two directions: (i) the particles interaction should
include a general quadrupole moment and (ii) the system
could be confined to a slab geometry or be extended to full
three dimensions. These extensions would nicely meet the
considerable experimental interest in the self-assembly of
complex organic molecules on surfaces.’”% Some of these
systems show a remarkable variety of different structures,
which can even be controlled via external parameters such
as magnetic fields®! or light with different polarization,®?
opening thereby the route to many interesting technological
applications.*%® The understanding of our simple model
considered in the present contribution could serve as a suitable
starting point for related investigations of the more complex
molecules considered in these studies. Extending the model
step-by-step towards more complicated shapes and to more
intricate effective interactions would help to understand the
numerous competing effects.>%

Finally we note that so-called Inverse Patchy Colloids
(IPCs),” i.e., colloids decorated with charged patches,
represent due to their charge distribution a closely related
system, as they also carry a linear quadrupole moment.
IPCs have been observed to form similar structures as the
ones encountered here both in simulations’"’? as well as in
experiments.’?
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APPENDIX A: TWO PARTICLE GROUND STATE
CONFIGURATIONS AT PARTICLE CONTACT

We consider two quadrupolar particles at contact, i.e.,
rip = o(t12,1;,1) [see Eq. (4)] and optimize their respective
and relative orientations by minimizing their electrostatic
energies. In Figure 16, we display the angles «; and a», en-
closed by the vector connecting the centers of the two particles
and the orientations of the respective quadrupolar moments
in the corresponding optimal configurations, as functions of «
(for the definitions of the angles see also inset in Figure 16).
Obviously, the T-configuration is only stable for values of «
close to unity. For strong anisometry (« < 0.75 or « = 1.2),
the ground state configuration is parallel displaced (PD).

APPENDIX B: REDUCTION OF PARAMETER SPACE
FOR HARD PARTICLES

The goal of the present subsection is to derive scaling
relations for the system parameters Q” (quadrupole strength)
and P (pressure) under which the thermodynamic properties
of the system (and thus its ground state configurations) remain
unchanged. Of course, these relations also hold for our reduced
parameters, which we introduced at the end of Sec. II.

We assume in the following a simplified version of our
interaction potential, namely the quadrupolar hard-ellipse
(QHE) model, defined by its interaction

Voue(ri, 0,05 0%)

{Vlr(l'fj,ﬁi,ﬁj;Qz) r;; > o(r;;,0;,0;)

0 else

= . (BD
where o (r;;,10;,1;) has been defined in Eq. (4). Thus, contrary
to our original system (see Sec. II), the QHE model consists of
impenetrable ellipsoidal particles, whereas the quadrupolar,
long-range part of the interaction is identical to our original
model, Eq. (7).

E 60 PD :: T '-: PD i
3 i j
| B -

O 1 i 1
1/2 2/3 1 3/2 2

R

FIG. 16. Angles a (full line) and @, (broken line) as functions of « that
specify the energetically most favorable configuration of two quadrupolar
particles in direct contact (see text and the inset for visualization). Note the
logarithmic scale along the k-axis.
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The potential energy, E,q, of a specific configuration of
the QHE system is defined via

Epo(r™,0V:0%) = 3" Voue(ry, 0,007, (B2)
INHES

where Vv = (r,...,ry) and a = (Qy,...,0y) specify the

microscopic configuration of the particles.

1. Ground state (vanishing temperature)

At vanishing temperature, the particles are positioned and
oriented in a non-degenerate ground state in an NPT ensemble
such that the enthalpy, H, is minimal, that is

H = mingn v g [Bpa(r,0%;0%) + PSo].  (B3)

The scaling properties of the QHE interaction potential
(via Eq. (B1)), with the quadrupole strength Q? induces a
scaling property of the entire potential energy [cf. Eq. (B2)],
ie., Epo(u0% = uE(Q%); henceforward, u is a simple
scaling parameter. Since the enthalpy H is a linear combination
of Epy and P, replacing Q% by uQ? [cf. Eq. (B3)] leads to the
same ground state only if the pressure also scales with . Thus,
we can conclude that a particular ground state configuration
of the QHE model (specified by {rgs,ﬁgs,Sg’S}) remains
invariant under the transformations Q> — uQ? and P — uP.

2. Finite temperatures

We next consider the QHE system at 7 > 0. The
phase space probability for the occurrence of a microscopic
configuration (specified by {r",u’}) in a phase space volume
of infinitely small extent in an NPT-ensemble is given by

o(rN ', Sp)drN da® dS,
exp {—(kBT)_1 [Epot(rN,ﬁN; Qz) + PSO]}

conf

x dr da” dSp, (B4)

where Z.ns is the corresponding partition function of the
ensemble. It is obvious that Eq. (B4) is invariant under the
transformations Eyo — pEpo, P — uP, and T — uT. Since
we know from Egs. (7) and (B2) that the potential energy of
non-overlapping, impenetrable particles is proportional to O,
ie.,

Epor = Z VQHE(rijaﬁi,ﬁj;Qz) « Q% (BS)
ijii<j

we obtain the simple rule, that p(r™,u”, Sy) is invariant under

the scaling law Q> — uQ* P — uP,and T — uT.
Thus, if we have a reference system (specified by Q2,
P, and T) at hand, we can simply calculate the properties of
another system (index “new”) via the following procedure.
Given the size of the corresponding molecule, 0y, its aspect
ratio « and the quadrupole strength, Q2 it is thus possible to
estimate the order-disorder transition temperature for the new
system: we first calculate the reduced quadrupole strength
via (Qhew)’ = Q2en/ (A7 EpmO Sen€0) from which we obtain the
scaling factor u from u = (Q%.,/Q%)* The order-disorder
temperature and pressure of the new system then follow from

J. Chem. Phys. 144, 074504 (2016)

the corresponding quantities of the reference system, Tr’;emng
and P, viaT* uT* and P, = uP".

melting,new — melting

APPENDIX C: APPLICABILITY OF PARAMETER
SCALING FOR SOFT PARTICLES

We now explore to which extent we can apply the
parameter scaling relations derived for the QHE system to
the actual system of soft particles investigated in the main part
of this paper (see Sec. II).

1. Ground state (vanishing temperature)

The total potential energy for a specific configuration of
soft quadrupolar ellipsoids is defined through

N AN. 2 .
Epo(x™,07;0%) = Z Vx5, 05,05)

L,ji<j
+ Vie(r, . 0,0, 07). (C1)

As pointed out in the discussion of the ground states in
Sec. IV A, the order parameters reveal as functions of
k strong similarities when one compares their values as
obtained for the parameter sets ((Q*)% P*) = (0.2,0.1) and
(@)% P*) = (20,10). This suggests that the soft particle
system fulfills at 7 = 0 a similar scaling relation as the QHE
system.

However, the corresponding enthalpy curves match only
in terms of shape, but not in terms of magnitude. We thus
introduce a phenomenological correction to the simple scaling
law of the enthalpy as developed in Appendix B 1. Specifically,
we assume that a scaling of P and Q2 with a factor y results in a
small rescaling of the ground state coordinates, i.e., r; — yr;,
where vy attains values close to unity. We further assume that,
when passing from one ground state, obtained for parameters
(Q% P) and a filling fraction 77, to a new ground system
(index “new”), specified by parameters (uQ?, uP) and a filling

95 |

-35 - -
0.5 1 2

FIG. 17. Reduced, dimensionless enthalpy curves obtained for the parameter
sets ((0*)?=0.2, P*=0.1) and ((Q*)? = 20, P* = 10), mapped via the scaling
laws presented in the text (cf. Eq. (C4)) onto the enthalpy, calculated directly
for the set of parameters ((Q*)% P*)=(2,1).
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FIG. 18. Melting curve T;emng((Q*)2
=2,P*=1,k) that separates the or-
dered phase (at low temperatures)
from the disordered phase (at high
temperatures). In addition, a rescaled
melting curve (using u=2) for
0.5 Troing (@) =4, P*=2,k) s
shown, which has been obtained by
applying the scaling laws specified in
the text.
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fraction 7,ew, the rescaling factor y is related to the change in

density according to
_[.m
v = .
nnew

As a consequence, the ground state cell volume is scaled with

¥

Regarding the total potential energy, we assume that its
scaling with respect to Q2 and the rescaling of the positions
follows the same law in the QHE system [see Egs. (B2), (B1),
and (7)], yielding

(C2)

GS aon 2 H -GS Aoa )
Epot,new(’yrij’ui’uj’ HQ%) = ?Epot(ri]’ui’uj’ Q).

(C3)
Collecting all contributions, we obtain the following
approximate expression for the enthalpy:
Hyew = SLESY(Q?) + uPy? §°
Y

pot

=L H+u [ﬁ - is] PsSS. (C4)
Y Y

We check the applicability of this phenomenological scaling
rule by calculating, as an example, enthalpies of a new system
from the values of the enthalpies obtained at (Q*)* = 0.2,
P*=0.1 and (Q*)? = 20, P* = 10. The corresponding values
for the enthalpy as functions of « are presented in Figure 17.
From these data, we can conclude that Eq. (C4) seems
applicable for k-values close to unity where the corresponding
structures possess a 4-fold symmetry (T-configuration). For
particles with larger aspect ratios, substantial deviations
between the respective enthalpy curves occur.

2. Melting curve

As shown in Appendix B 2, the properties of the QHE
system fulfill a parameter scaling relation also at finite
temperature.

We now consider the question whether this rule can
also be extended as an approximation to a system of soft
particles. We are particularly interested in the melting curve,
an example for which is shown in Figure 14 pertaining to the
parameters ((Q*)% P*) = (2, 1). To test the scaling rule, we have

1.381.5 1.66 1.83 2.1

carried out the corresponding simulations for the case u = 2,
ie., ()% P*) = (4,2) at temperatures 7* = 0.2,0.4,...,3.2.
The rescaled melting curve for the new system, specified by
the latter parameter set is displayed in Figure 18 in the rescaled
form together with the original melting curve, corresponding
to ((Q")%P*) =(2,1). We observe that the new, rescaled
melting curve is similar in shape to the original one, but the
two sets of data do not coincide: the rescaled curve lies over
the entire k-range above the reference curve; we attribute this
fact to the stronger molecular overlaps leading to an increased
binding strength. Specifically, we observe for all aspect ratios
cohesion energies that are about three times higher for the
parameter set ((Q*)% P*) = (4,2) at the ground state; the factor
three differs from the expected value of u = 2. In addition to
the stronger overlaps, also the observed structural archetypes
can differ between the two systems at the ground state. To be
more specific, we obtained for x = 1.38, a TH-configuration
for ((Q*)? P*) = (4,2), whereas for ((Q*)%P*) =(2,1) a T-
configuration is observed. We conclude that the scaling law
put forward in Appendix B 2 only provides a rough estimate
of the results obtained in actual calculations.
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