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Abstract
The behavior of a fluid with competing interaction ranges adsorbed in a controlled pore size
disordered matrix is studied by means of grand canonical Monte Carlo simulations in order to
analyze the effects of confinement. The disordered matrix model is constructed from a
two-dimensional non-additive hard-sphere fluid (which shows close to its demixing critical
point large fluctuations in the concentration), after a subsequent quenching of the particle
positions and removal of one of the components. The topology of the porous network is
analyzed by means of a Delaunay tessellation procedure. The porous cavities are large enough
to allow for cluster formation, which is however somewhat hindered as a result of the
confinement, as seen from the comparison of cluster size distributions calculated for the fluid
under confinement and in the bulk. The occurrence of lamellar phases is impeded by the
disordered nature of the porous network. Analysis of two-dimensional density maps of the
adsorbed fluid for given matrix configurations shows that clusters tend to build up in specific
locations of the porous matrix, so as to minimize inter-cluster repulsion.

Keywords: fluids with competing interactions, disordered, porous matrix, adsorption

(Some figures may appear in colour only in the online journal)

1. Introduction

The description of adsorption processes of complex fluids
on disordered, porous matrices using theoretical concepts
and/or computer simulations is of paramount importance
in many fields of technological relevance, such as
heterogeneous catalysis, gas storage, molecular sieving, or
gas chromatography, to name a few [1, 2]. If one aims at
a quantitative prediction of such processes, it is indispensable
to mimic in the underlying theoretical models the features both
of the matrix as well as of the adsorbed fluid as faithfully as
possible.

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

As a typical, widespread material of such a matrix we
consider a controlled pore size glass, e.g. a borosilicate
glass whose precursor is typically a mixture of Na2O-B2O3-
SiO2, which shows a characteristic miscibility gap for certain
compositions [3]: in this material the typical pore size ranges
between 1 nm and 1 µm, the glass shows as a consequence
of the rigid silica network a high degree of chemical, thermal
and mechanical stability and the inner surface of the material
can easily be functionalized. The production of such a
porous glass is realized in what is known as the VYCOR
process [3, 4]: after thermal treatment a glass is formed via
spinodal decomposition into a sodium-rich borate phase and
a silica phase; removing in a subsequent step the former one,
leaving a highly porous, disordered matrix with the above-
mentioned properties. Characteristic features of the emerging
glass (such as porosity, pore size, etc) can be influenced by
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the thermal treatment and/or the original composition of the
material.

In an effort to capture the main features of this process
in an in silico preparation of the matrix, we use in our
investigations the simplest possible system that shows spinodal
decomposition, namely a binary mixture of (positively) non-
additive hard spheres. In order to enhance the visibility
of our results we restrict ourselves to a two-dimensional
system. Using semi-grand canonical Monte Carlo simulations
we generate particle configurations of our mixture close
to the critical density where concentration fluctuations are
pronounced. Selecting suitable configurations and removing
one particle species we mimic the essential features of the
above outlined VYCOR process, leading finally to our matrix
configurations. A subsequent analysis of those areas that
are accessible to an added fluid in terms of a Delaunay
triangulation [5–8] provides quantitative information about the
characteristic features of the matrix, such as the porosity and
the pore size distribution.

We then bring a specific fluid into contact with the matrix
and study its adsorption behavior. Despite the simplicity
of the model fluid, it is able to show a rather complex
phase behavior in terms of mesophase formation. Originally
introduced by Sear and co-workers [9] to model the interaction
of nanoparticles at the air-water interface, the potential
action between the particles of the system is characterized
by a strongly repulsive region plus an adjacent tail that is
attractive at short distances and repulsive at intermediate and
long distances (SALR). As a consequence of the intricate
interplay of the attractive and the repulsive components of the
interaction, the system is able to form mesophases below a
certain temperature: with increasing density clusters, stripes
and inverse clusters (i.e. bubbles) emerge [10–12]. Thus, this
simple model is able to mimic characteristic self-assembly
features of realistic systems, such as food, pharmaceuticals,
vegetation patterns, etc [13–18].

Using grand canonical Monte Carlo (GCMC) simulations
we study the behavior of the SALR fluid inclusions in the
disordered matrix for various chemical potentials (i.e. fluid
densities) and temperatures. We investigate the effects of
disorder and simple geometric confinement, since the matrix-
fluid interactions are modeled by plain hard-core repulsions.
Particle aggregation is characterized by means of a cluster
analysis of the fluid configurations and the presence of a pre-
peak in the fluid structure factor which grows as temperature
is lowered. The temperature-density region where clustering
is dominant under confinement is compared with that of the
corresponding bulk system. No evidence of the presence of
fluid lamellar phases is found, in contrast to the behavior
previously described for this SALR fluid in bulk [11] and
in particular under slit pore confinement [12]. With the aid
of two-dimensional density maps, one can see that clustering
builds up at specific locations in the pore topology in an effort
to minimize inter-cluster repulsion.

The manuscript is organized as follows: in the subsequent
section we present our model, putting particular emphasis on
the in silico production process of our matrix that mimics
features of the VYCOR process; furthermore, we introduce

Figure 1. Phase diagram of a two-dimensional, binary mixture of
non-additive hard spheres in the (ρ, xA)-plane as obtained from
semi-grand canonical MC simulations, applying histogram
reweighting techniques (see text). An estimate for the critical
density, ρc (see text), is indicated by the green cross. The blue cross
specifies the ρ-value that has been considered in subsequent
investigations for possible matrix configurations. Error bars provide
evidence of the accuracy of the data along the coexistence curve.

our model for the complex fluid. In section 3 we present and
discuss our results and close the manuscript in section 4 with
a summary and an outlook to future work.

2. Model and methods

2.1. The matrix

For our theoretical investigations we want to create a matrix
that mimics the experimental preparation process of a realistic
controlled pore glass as faithfully as possible [19]. Since spin-
odal decomposition [20] (and subsequent removal of one of the
components) is a standard process in experimental matrix syn-
thesis processes, we proceed in our theoretical approach along
similar lines. To this end we consider a two-dimensional, bi-
nary mixture of non-additive hard spheres: such a system is
easily accessible from the computational point of view and is
able to show for certain system parameter combinations spin-
odal decomposition. Thus, we expect that our in silico matrix
will capture the most relevant features of a realistic matrix.

In our binary mixture of non-additive hard spheres the
diameters of both species (labeled ‘A’ and ‘B’) are assumed
to be equal (σAA = σBB = σ ), while we set cross-interaction
diameter, σAB, to

σAB = 1
2 (1 + �) (σAA + σBB) .

σ is used henceforward as the unit length. Setting � = 0.2,
the system undergoes above a certain critical density, ρc, a
demixing transition [21]. Later on, one of the two particle
species will play the role of matrix particles (in our case it will
be species A) while the other species acts as a template and is
to be removed creating thereby the pores of our matrix.

For this binary mixture we have performed semi-grand
canonical Monte Carlo (MC) simulations [22, 23], imposing
the difference in chemical potential �µ = µA − µB between
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Figure 2. Typical snapshots of our two-dimensional binary mixture of non-additive hard spheres as obtained in MC simulations (see text).
Particles of the two species are depicted in different colors. The respective values for the overall number density, ρ, are ρσ 2 = 0.5, 0.6 and
0.675 (from left to right and from top to bottom).

species A and B, the area A(= L2) with L being the edge
length of the quadratic simulation box, the temperature T and
keeping the total number of particles, N(= NA + NB) fixed;
xA = NA/N is the concentration of particles of species A. The
total number density ρ = N/A is thus fixed. In addition to
the conventional MC moves, particles can also exchange their
identity in suitable MC moves [24]. After 5×105 MC sweeps
for equilibration, our simulations were typically extended over
106 MC sweeps.

Analyzing the molar fraction histograms for the binary
mixture for different densities and system sizes, the
concentrations at coexistence, xA(ρ) and thus the phase
diagram of the system could be evaluated; it is depicted in
the (ρ, xA)-plane in figure 1. In an effort to locate the critical
density ρc of the demixing transition as accurately as possible
we have considered different ensemble sizes with N varying
between 5000 and 20 000 particles. Using the scaling laws
given in [25], the value of the critical density for an infinite
system size is estimated to be ρc = 0.684. For density-
values close to the critical density the system exhibits strong
fluctuations in xA (and thus in NA), a fact that will be of

Figure 3. (Partial) structure factor of particle species A, S(q), as a
function of q of our two-dimensional, binary mixture of non-additive
hard spheres as obtained in MC simulations (see text), evaluated for
different values of the overall number density, ρσ 2 (as labeled).

3
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Figure 4. Visualization of the creation process of a matrix configuration. Top-left panel: typical snapshot of our two-dimensional, binary
mixture of non-additive hard spheres close to spinodal decomposition conditions; particles of the two species are depicted in different colors
(species A—light; species B—dark). Top-right panel: particles of species B have been removed. Bottom panel: particles of species A that
are located in isolated parts within areas predominantly populated by particles of species B are removed, leaving the remaining particle
species A as the desired matrix configuration.

relevance when creating a matrix of desired density, ρm and
porosity (see below). Thus, it is appropriate to retain at this
point candidate matrix configurations with a number of matrix
particles that roughly corresponds to the desired target value
of the matrix density.

In figure 2 we show typical snapshots of particle
configurations as obtained in our simulations of the binary
mixture for selected ρ-values. The corresponding (partial)
structure factor S(q) for the A-particles is depicted in figure 3;
these functions show—upon approaching the critical density—
the expected onset of a divergence at small q-values, a feature
characteristic for a system close to spinodal decomposition.
Alternatively, thinking in terms of the final matrix-scattering
factor, the low-q divergence in the structure factor is a direct
result of the presence of pores with length scales comparable
to the simulation box size. The low-q behavior can be related
to the surface of the pore network and its structure, a much
used approach in the analysis of small angle diffraction data in
porous materials [26].

From these particle configurations we can now construct
our matrix via a process that is schematically depicted in the

panels of figure 4 and that will be outlined in the following.
Let us assume that our simulation-generated configuration
contains a suitable number of A-particles; a representative
particle arrangement is shown in the top-left panel of figure 4.
We now remove all particles of species B, a procedure that
corresponds to etching out a particular component in the
experimental matrix synthesis process (see top-right panel
of figure 4). Finally, we have to remove all those isolated
A-particles, that are separated from regions covered by a
network of A-particles by a distance larger than some cut-
off value; for our purposes this cut-off distance was assumed
to be 2σ . Thus, we end up with a compact matrix formed
by A-particles (see bottom panel of figure 4). We note that a
similar procedure has been used to create the matrix in a related
problem [27].

With such a matrix configuration at hand we can now
proceed to the characterization and to the analysis of the
porous structure on a quantitative level, based on a Delaunay
decomposition of the simulation cell [6]. Starting from the
positions of the matrix particles (top-left panel of figure 5),
Delaunay triangles are constructed (top-right panel of figure 5)

4
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Figure 5. Quantitative analysis of a representative matrix configuration (depicted in figure 4) based on a Delaunay decomposition. Top-left
panel: points represent positions of the matrix particles; top-right panel: Delaunay decomposition based on these positions; bottom-left
panel: crossable (green) and non-crossable (red) edges of the Delaunay triangles (see text); bottom-right panel: accessible and
non-accessible Delaunay triangles are marked by a green and a red point in their center, respectively.

via a well-defined process [7, 8, 28]. The edges of these
triangles are now classified either as ‘crossable’ faces (i.e.
they are sufficiently long to let particles of diameter σ pass)
or as ‘non-crossable’ faces (i.e. they are shorter than σ ); the
respective faces are colored in the bottom-left panel of figure 5
in green or red, respectively. Delaunay triangles that have only
non-crossable faces have to be discarded for obvious reasons
and we are finally left with Delaunay triangles with crossable
faces only and that can be reached by the fluid particles by
diffusion and inclusion (bottom-right panel of figure 5). The
total area covered by accessible Delaunay triangles in relation
to the total surface of the simulation cell yields the porosity
parameter p, with 0 � p � 1. Repeating the creation
process of the matrix and its analysis in terms of a Delaunay
decomposition several hundred times, we obtain a narrow
probability distribution of the porosity parameter p of all the
created matrices centered around a porosity value of p � 47%.
We note in passing that the composition of the original sample
prior to quenching and removal of B particles is far from being
equimolar (which explains why the portion of solid material

in the matrix is above 50%). This is simply due to the fact that
during the semi-grand ensemble simulation the composition
necessarily fluctuates.

2.2. The fluid

In the following, we immerse a fluid of a desired density, ρf , at
a target temperature T into this matrix. The fluid particles
interact via a potential �(r); this interaction consists of a
repulsive region (with a spatial extent σ ) and is characterized
beyond this region by a tail that is attractive at short distances
and repulsive at larger particle separations. In this contribution
we have chosen a slightly modified version of the standard
parameterization for this type of interaction, introduced
previously by Sear et al [9] and analyzed in detail by Imperio
and Reatto [10–12], with the following functional form:

�(r) = −εa
σ 2

R2
a

exp

(
− r

Ra

)
+εr

σ 2

R2
r

exp

(
− r

Rr

)
+usr(r) (1)
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εa (εr) and Ra (Rr) represent the strength and the range of the
attractive (repulsive) contribution to the potential tail in �(r),
respectively. The short range repulsive part of �(r) is given by

usr(r) =
(

σ + δ

r

)n

(2)

with n = 20 and δ = −0.01σ . This soft-core repulsion
replaces the hard-core term used in [10–12] in order to
ease forthcoming studies on dynamic properties by means
of molecular dynamics simulations. For computational
convenience all interactions are cut and shifted at Rc = 10σ .

In our case we have chosen the following potential
parameters: Ra = σ , Rr = 2σ and ε = εa = εr. Our decision
to use these particular values for the potential parameters is
based on the fact that they have been used in previous studies
of SALR fluids [10–12, 29, 30]. The cutoff radius is chosen
large enough to preserve the clustering behavior. Increasing
this cutoff would only imply somewhat larger inter-cluster
separations, since the cutoff is located in the repulsive tail of
interaction.

Furthermore, we introduce the dimensionless tempera-
ture, T ∗ = kBT/ε, kB being the Boltzmann constant. The
potential �(r) is depicted for this particular choice of param-
eters in figure 6.

Depending on the density and the temperature this system
is able to show a rich phase behavior, which is characterized
below a certain temperature by the formation of three
archetypes of mesophases: clusters (at low densities), stripes
(at intermediate densities) and bubbles (i.e. inverse clusters
at high densities). Typical snapshots for the equilibrated (i.e.
unconfined) system as obtained in computer simulations are
shown in figure 7 together with structural information in the
form of pair distribution functions g(r) and static structure
factors S(q). The phase behavior of this system has been
studied quite extensively during recent years [10–12, 29–32].

3. Results

The aim of this paper is to study the influence of confinement
realized via a disordered, porous matrix on the properties
of a fluid with competing interactions: among others we
will address the question of how the characteristic pattern
formations of these particles will be affected by the
confinement.

Using GCMC simulations (i.e. in an µAT -ensemble) we
have studied the structural and thermodynamic properties of
both the bulk and the confined SALR fluid. Simulations have
been realized in a square simulation box of area A = L2 using
periodic boundary conditions. In the case of the bulk fluid we
have used L = 64σ and L = 86σ for the confined system.
When comparing values of the densities of the bulk and of the
confined fluid (ρf ), in the latter case we refer to the effective
density of the adsorbed fluid, evaluated as the number of fluid
particles per area of the accessible matrix sample. Densities
reported correspond to averages along the simulation runs and
have standard deviations that vary typically in the range of
1–3%.

Figure 6. Interaction potential �(r) as a function of the distance r .
The red line shows the original SALR potential as used in [10, 11]
with the parameters specified in the text; the green line denotes the
softened version of the SALR potential used in this contribution and
as specified in equations (1) and (2). The distance rcl highlighted in
the figure corresponds to �(rcl) = 0 and defines our reference
distance to consider two particles linked in a cluster.

Since matrix-fluid interactions are plain hard-core
repulsions, we can anticipate that any deviations in the behavior
of the confined fluid with respect to the properties of the bulk
fluid will originate from the effects of randomness and the
topology of the confining matrix.

3.1. Thermodynamic properties

In figure 8 we show the adsorption isotherms (i.e. the chemical
potential µ/kBT ) and the potential energy E versus the fluid
density ρf for several temperatures ranging from T ∗ = 0.09
to T ∗ = 0.33, corresponding to state points where cluster
formation is observed. Results for the bulk and for the confined
fluid (at a matrix density ρmσ 2 = 0.324) are shown and
compared in figure 8. We observe that the chemical potential
attains lower values for the same density when the fluid is
confined. This effect is likely the result of the presence of long
range repulsions between fluid particles, whose net impact is
diminished by the presence of matrix particles. Effects of
clustering are visible in the energy at low temperature: the
energy curves exhibit a minimum and then bend upwards as the
density is increased (ρfσ

2 � 0.15 in the bulk and ρfσ
2 � 0.23

under confinement) due to the effect of increasingly dominant
inter-cluster repulsions. The presence of the matrix shifts the
effect of long-ranged interparticle repulsion to a higher fluid
density value and the potential energy remains negative over
all the density range considered. These features are most
likely due to the effect of the spatial separation forced upon
the fluid particles as a consequence of the presence of matrix.
One might expect on this basis that the cluster phase will be
stable even up to higher densities in the confined system. This
will become evident in the next subsection when plotting the
structural phase diagram.

6
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Figure 7. Left panels: typical snapshots of a two-dimensional system where the particles interact via a potential given in equations (1) and
(2) using parameters specified in the text; results were obtained in GCMC simulations. The temperature was set to T ∗ = 0.09; snapshots
were taken at different densities (from top to bottom 〈ρf〉σ 2 = 0.144, 〈ρf〉σ 2 = 0.2955 and 〈ρf〉σ 2 = 0.4454). Central panels:
corresponding pair distribution functions g(r) as functions of r . Right panels: static structure factors S(q) as functions of q.

3.2. Structural properties

We have studied the characteristic mesophases that occur in
the SALR fluid in bulk (namely droplets, stripes and bubbles
[10, 11]) and have investigated to what extent they appear in

the confined geometry. First, we have performed a qualitative,
visual inspection of the typical snapshots, followed by a more
quantitative analysis in terms of pair distribution functions,
g(r) and structure factors, S(q). These results are collected in
figure 7 for the bulk fluid and in figure 9 for the confined fluid.

We start our discussion with the bulk case: in the left
column of figure 7 one can see in representative snapshots of
the system taken at a sufficiently low temperature (T ∗ = 0.09)
that particles self-assemble into the characteristic mesophases
and for appropriate fluid densities: 〈ρf〉σ 2 = 0.14 401
(droplets), 〈ρf〉σ 2 = 0.29 551 (stripes) and 〈ρf〉σ 2 = 0.44 543
(bubbles). In the left column of figure 9 the corresponding
snapshots for the confined system at similar fluid densities are
presented. From a simple visual inspection one can already
infer that our particular type of confinement tends to favor the
formation of droplets over the percolating structures; only for
higher fluid densities signatures for stripe formation within

the pores are observed. Our qualitative observations are
also reflected in the corresponding pair distribution functions
and the structure factors, collected in the second and third
columns of figures 7 and 9. These graphs show the distinct
signatures of clustering [10, 11, 31, 32], namely the presence
of a huge prepeak in S(q) and a wide maximum in g(r)

at intermediate distances corresponding to the inter-cluster
separation. Furthermore, in the pair distribution function we
can observe two different modulations: a short-ranged one
that reflects the local structure of the fluid with a periodicity
of approximately σ and a long-ranged modulation due to
the pattern structure. This mesophase structure is more
pronounced in droplets, whose g(r) exhibit a small minimum
around r � 6σ corresponding to the average diameter of
the clusters. The maximum around r � 11σ indicates, as
mentioned, the average distance between neighboring clusters.
At very low densities and temperatures, the size of the clusters
is essentially determined by the position of the maxima in
�(r), (i.e. where d�(r)/dr = 0); in our case this distance
is ≈4.16σ . This quantity defines approximately the average
size of a cluster for low densities, which in turn conditions
the inter-cluster separation in combination with the range of

7
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Figure 8. Adsorption isotherms µ/kBT (lower graphs) and reduced,
dimensionless internal energy, E/NkBT , (upper graphs) versus the
fluid density 〈ρf〉σ 2 for the SALR fluid in the bulk (left panel) and
under confinement (right panel); temperatures as labeled. Fluid
densities for the confined case are calculated taking into account the
area accessible to the fluid particles in the porous matrix. Error
estimates of the densities are the same size as the symbols. Lines are
drawn as a guide to the eye.

the repulsive tail. In our case, modifying Rc from 7.5σ to
30σ changes the average interparticle separation from 9.3σ to
11.6σ . Larger densities increase the average cluster size but
hardly influence the inter-cluster separation.

In the stripe phase the maximum in g(r) is still clearly
visible, reflecting the average distance between stripes. In the
presence of the matrix, the essential features can be observed
but now the stripe phase no longer occurs as a percolating
mesophase. In figure 9 one can identify the emergence of a
stripe phase in the largest portion of the pore. Its growth is
limited by confinement and the upper part of the pore is filled
with a bubble-like phase. As a consequence of the presence of
stripes, the long range maximum in g(r) is found again, similar
to the stripe phase of the unconfined system at 〈ρf〉σ 2 = 0.296,
shown in the central panel of figure 7.

The structure factor S(q) is shown for the bulk SALR
fluid in the last column of figure 7 and for the confined fluid
in the last column of figure 9. This function provides via
a prepeak at low q-values evidence for the occurrence of a
mesophase at an intermediate range. In the confined case we
observe a marked growth in S(q) as q → 0, i.e. a characteristic
feature of the presence of a porous structure with long-ranged
correlations induced by the matrix. By construction these
correlations have in our case the same range as the spatial extent
of the simulation box, since they result from the proximity
of the spinodal decomposition of the non-additive hard disk
mixture, i.e. the precursor of our matrix. Furthermore, we
observe both in the bulk and in the confined case a prepeak in
S(q) at q � 0.5σ−1, i.e. the signature of intermediate range
order. The position of this prepeak corresponds in real space
to correlations at distances r � 11σ which are in agreement
with the distance at which a maximum in g(r) is observed. It is
worth mentioning that in the bulk bubble phase S(q) also shows
a prepeak, reflecting correlations between bubbles. However,
the corresponding intermediate range maximum of g(r) is

missing, a feature which can be considered as a signature of
the bubble phase.

3.3. Structural phase diagram

We have simulated a large number of states at different
temperatures and chemical potential; by identifying the
different types of mesophase structures we could construct a
structural phase diagram. These investigations are based on
GCMC simulations extending over 5 × 105 equilibration steps
followed by a run over 6 × 106 steps (2 × 106 for the confined
fluid) of which 5 × 103 independent configurations were used
in the cluster analysis.

We have performed a geometric cluster analysis of our
configurations [33], using as link distance rcl = 2.78σ , i.e. an
r-value which corresponds to the point where �(rcl) = 0 (see
equations (1) and (2) and figure 6). For smaller distances the
potential of two interacting particles is negative and particles
are thus considered to belong to the same cluster. We have
calculated the cluster size distribution, n(s) and its normalized
counterpart, N(s), as proposed by Stauffer [34]: this quantity
is defined as the fraction of particles contained in clusters of
size s, normalized by the cluster size, s and by the number of
particles of the system, N. This normalized function has been
used in a large number of publications on percolation (see, for
instance, [33, 35, 36]).

In figure 10 we have plotted N(s); this distribution allows
us to distinguish the different types of possible mesophase
structures for the bulk SALR fluid. For each type of mesophase
a characteristic snapshot is shown on the lower part of this
figure. Analysis of N(s) leads to the definition of four
distinctively different morphologies: (i) the dispersed fluid
(mainly consisting of monomers), for which the cluster size
distribution has a maximum at s = 1 and then decreases
monotonically (red line in figure 10); (ii) the clustered
fluid, consisting of finite size clusters where the cluster size
distribution has a maximum for s > 1 and then decreases
monotonically (blue line in figure 10); (iii) and (iv) two
different percolating states, where N(s) exhibits maxima at
cluster sizes close to the system size: in the case of random
percolated states (bubbles) all the particles belong to the same
cluster (pink line in figure 10) and N(s) has a single maximum;
finally, in the case of cluster percolated states (stripes, green
line in figure 10) secondary maxima at given large s-values
resulting from the presence of disconnected stripes in the
sample.

Based on this analysis, we have mapped out the different
regions in the phase diagram where different mesophase
structures can be identified. In figure 11 the emerging
structural phase diagram for the bulk fluid (upper graph) and the
confined system (lower graph) are displayed. Comparing both
graphs, we observe that the cluster percolated states dominate
the structural phase diagram of the confined fluid. These states
correspond essentially to stripe phases in which the stripes are
prevented from organizing themselves in a lamellar phase due
to the effect of the matrix disorder, despite the relatively large
size of the pores of our particular matrix. In a lamellar phase
such as the one depicted in the lower panel of figure 10 one
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Figure 9. The same as figure 7 for the fluid confined in the porous matrix. Average fluid densities, 〈ρf〉σ 2, are indicated in the graph legends.

can see that the stripes percolate, which is not the situation in
a prototype stripe phase such as the one illustrated in the lower
left panel of figure 9. In the case of the confined fluid, the
cluster percolated phases are mostly composed of finite size
stripes.

Interestingly, the cluster fluid phase is nonetheless
supported by the presence of the matrix, a fact that already
became apparent when comparing the internal energies of both
systems in figure 8. On the other hand, we note that when
the density increases, from a visual inspection the distinction
between a confined stripe phase (a cluster percolated state) and
the bubble phase (random percolated state) becomes somewhat
blurred due to confinement. Some structures could be thought
of either as bubbles or short stripes. The presence of a
maximum in the cluster size distribution for finite s however
tells us that these cluster percolated phases are more properly
interpreted as short stripe phases. This is the reason why
random percolated states are missing from the structural phase
diagram of the confined fluid of figure 11. For fluid densities
higher than those depicted in figure 11, one will certainly find
random percolated states, even in the confined case for matrices
with sufficiently high porosities.

A quantitative comparison of our phase diagram with
the one presented in figure 1 of [32] is difficult and even

problematic since the two approaches used in the respective
contributions (classical density functional theory [DFT] in
[32] and simulations in the present contribution) are forced

to treat the different issues of the underlying model and the
ensuing problems with different strategies; this applies, for
instance, to the fact (i) that the tail of the potential beyond
the hard core is treated in DFT in a perturbative fashion,
(ii) that we consider a harshly repulsive, but soft core for
the interaction or (iii) that DFT investigations are based on
well-defined regular mesophases, while we have to extract
the type of the mesophases from the simulation data via
suitable algorithms. On a qualitative level we can confirm
the characteristic sequence of emerging mesophases with
increasing density.

3.4. Two-dimensional density distribution

In figure 12 we show the two-dimensional fluid density
distribution, ρf(x, y), at a sufficiently low temperature (T ∗ =
0.12), illustrating the effects of clustering at a rather low
(〈ρf〉σ 2 = 0.067) and a relatively high density (〈ρf〉σ 2 =
0.29); the density of the porous matrix is ρmσ 2 = 0.324.
In these figures the black area represents those regions from
which the centers of the fluid particles are excluded, i.e. where
ρf(x, y) = 0.

9
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Figure 10. The upper panel shows the normalized cluster distribution N(s) (see text) for various fluid densities 〈ρf〉σ 2 of the SALR fluid as
labeled. Representative snapshots of the corresponding mesophases are illustrated in the bottom panels (from left to right with increasing
〈ρf〉). Different colors of the particles provide an approximate measure of how many particles are involved in separated regions of the
respective mesophases.

Figure 11. Structural phase diagram of the bulk SALR fluid (upper
graph) in the (T ∗, 〈ρf〉)-plane. The lower graph corresponds to the
phase diagram for the confined fluid. Different mesophases are
indicated on the figure by different symbols and colors as labeled
(open symbols—bulk fluid, full symbols—confined fluid).

The formation and the evolution of the clusters in these
systems are relatively slow processes, in particular when the
clusters are trapped in narrow regions which hinder their
moves. Therefore, we require rather long GCMC simulations
to obtain an exhaustive sampling of the configurational space

that allows us to draw a sufficiently smooth density distribution.
With this requirement in mind, we have performed 5×105 steps
for equilibration and 4×106 steps to accumulate and to analyze
the configurations after every 200 steps.

The right panel of figure 12 corresponds to the higher
fluid density: here the pores are almost filled and we can
observe that the arrangement of the minima and of the maxima
in the density distribution approaches the typical pattern of
a triangular lattice. Density maxima (marked in yellow)
correspond essentially to individual particles. From this panel
one can see that the highest values for the fluid density are
observed close to the pore walls. This might seem astonishing
at first sight since the matrix-fluid interaction is entirely
repulsive. However, this alleged contradiction can easily be
explained: since the fluid particles attempt to minimize their
mutual long-range repulsion, they move as far apart as possible
from each other enhancing thereby the fluid density close
to the walls; this feature, in turn, lowers the internal energy
since typical interparticle separations are then below rcl. This
explains why for low temperatures we have seen that in contrast
with the bulk, now the internal energy remains negative for
all fluid densities under consideration. Our observation that
the particles tend to assemble close to the matrix, is similar
to results reported some time ago in [12]: an enhanced fluid
density was also observed for a SALR fluid confined between
two walls when their separation was incommensurate with the
periodicity of the mesophase of the bulk system.

10
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Figure 12. Two-dimensional contour plot of the density distribution ρf(x, y) of the SALR fluid adsorbed in a disordered, porous matrix for
〈ρf〉σ 2 = 0.067 (left panel) and 〈ρf〉σ 2 = 0.29 (right panel); the height of ρf(x, y) is color-coded via the bars on the right hand sides of the
panels. The left panel corresponds to a cluster phase, while the right panel is a typical stripe (cluster percolated) state point. In both cases
the matrix density is ρmσ 2 = 0.324 and the temperature was set to T ∗ = 0.12. The black area represents those regions from which the
centers of the fluid particles are excluded, i.e. where ρf(x, y) = 0.

The left panel of figure 12 corresponds to the lower fluid
density case. Here we observe that the density distribution
provides evidence of regions of high fluid density that
are spatially well-separated, corresponding to well-defined
particle clusters. These aggregates tend to populate certain
‘pockets’ of the porous matrix: while the short-range attractive
part of the potential �(r) is responsible for the cluster
formation, the long-range part of the interaction induces the
repulsion between clusters; thus the ‘preferred’ positions of
the clusters within the porous structure are those where the
matrix is able to screen the long-ranged repulsive interaction
between the clusters.

The distance between neighboring clusters—defined as
the average separation between the density maxima in
figure 12—agrees well with the values obtained from the
position of the prepeak inS(q) and location of the wide maxima
in g(r), i.e. at distances r ∼ 10σ–11σ of the confined system.
This inter-cluster distance is also in accordance with the typical
inter-cluster distances observed in the bulk fluid. This average
separation is exclusively determined by the balance of range
and intensity of the repulsive and attractive components of the
SALR interaction: it is hence unaffected by the presence of the
otherwise inert matrix.

4. Conclusions

In summary, we have observed that the adsorption process of
the SALR fluid in our porous matrix strengthens the formation
of droplets, i.e. it stabilizes the cluster phase and impedes the
formation of percolating structures. Emerging stripe phases
can still be found in large pores, whereas in small pores the
cluster phase transforms into a bubble phase upon increasing
fluid density. For the type of matrix we constructed, we find
that the pores are wide enough to preserve the average inter-
cluster separation in the confined fluid with values quite close
to those obtained for the infinite fluid.

Future work will concentrate on the effects of confinement
on the fluid dynamics and the modulation of the fluid
mesophases by tuning of the matrix-fluid interactions, possibly
including the presence of heterogeneities in the matrix
composition.

In addition to the ‘terrestrial’ applications of fluids
adsorbed and included in disordered porous matrices one
might speculate that similar mechanisms might be observed
at atmospheric density variations close to planetary objects,
leading eventually to condensation.
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