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Landau theory (LT) is an indispensable cornerstone in the thermodynamic description of phase
transitions. As with structural transitions, most applications require one to consistently take into account the
role of strain. If temperature drives the transition, the relevant strains are, as a rule, small enough to be
treated as infinitesimal, and therefore one can get away with linearized elasticity theory. However, for
transitions driven by high pressure, strains may become so large that it is absolutely mandatory to treat them
as finite and deal with the nonlinear nature of the accompanying elastic energy. In this paper, we explain
how to set up and apply what is, in fact, the only possible consistent Landau theory of high-pressure phase
transitions that systematically allows us to take these geometrical and physical nonlinearities into account.
We also show how to incorporate available information on the pressure dependence of elastic constants
taken from experiment or simulation. We apply our new theory to the example of the high-pressure
cubic-tetragonal phase transition in strontium titanate, a model perovskite that has played a central role in
the development of the theory of structural phase transitions. Armed with pressure-dependent elastic
constants calculated by density-functional theory, we give an accurate description of recent high-precision
experimental data and predict a number of elastic transition anomalies accessible to experiments.
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I. INTRODUCTION

High-pressure phase transitions in crystals constitute a
central research area of modern physics that attracts wide-
spread interest, ranging from astrophysics and geology to
chemistry and nanotechnology. Experimentally, this brisk
activity is stimulated by the permanent refinement of
diamond-anvil-cell techniques, while the ongoing theoreti-
cal and hardware-related advances also allow quite precise
ab initio calculations of high-pressure transitions. In
comparison, even nowadays, the sophistication of the
theoretical concepts that are employed to analyze and
interpret the high-quality data produced by these methods
still leaves a lot to be desired.
The reason for this deplorable situation is not hard to see.

In condensed-matter physics, the group-theoretic analysis
of symmetry changes at phase transitions is a central
concept. Combined with thermodynamics, the resulting
machinery of irreducible representations, order parameters
(OPs), possible domain states, etc., which comes under the

name of Landau theory, has proven its value countless
times as one of the most useful and versatile approaches to
gain both a qualitative as well as a quantitative under-
standing of phase transitions. In the Landau theory (LT) of
solid-state structural transitions, strain usually plays an
important role as a primary or secondary OP [1]. For
temperature-driven structural transitions and/or at small
applied external pressures, strain effects may be small
enough to allow the involved strain components to be
treated as infinitesimal. The elastic energy may then be
truncated beyond harmonic order. Consistency then
demands that we sacrifice the possibility of a pressure
dependence of the “bare” elastic constants C0

ij character-
izing the high-symmetry phase. However, once the external
pressure comes close to the value of the crystal’s elastic
constants (typically, some 100 GPa), ignoring this pressure
dependence and other nonlinear effects is bound to result in
errors that can quickly approach 100%.
Despite these obvious shortcomings, which are dis-

cussed in more detail in the Supplemental Material [2],
infinitesimal strains continue to be frequently employed in
the Landau analysis of high-pressure transition data [3–7].
Trying to circumvent the technical and conceptual diffi-
culties of nonlinear elasticity theory, many authors are
tempted to resort to approximations that are difficult to
justify. Bold manipulations like fitting volume data to a
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nonlinear equation of statewhile continuing to treat strains as
infinitesimal and introducing pressure-dependent elastic
constants in an ad hocmanner inevitably yield unacceptable
internal theoretical contradictions. For instance, there is an
important tensorial consistency relation between the pressure
dependence of the elastic constants and that of the unit-cell
parameters [8], which is generously ignored in all brute-
force attempts to introduce an ad hoc P dependence C0

ij ¼
C0
ijðPÞ of the bare elastic constants. In passing, we note that

it usually remains unclear why other parameters of the
Landau potential that are used should still be assumed to be
pressure independent. Even more importantly, nonlinear
elasticity theory carefully distinguishes between second
derivatives of the free energy taken with respect to various
strain measures, and the resulting “elastic constants,” which
are known as, e.g., Birch, Voigt, Fuchs, and Huang coef-
ficients [9,10], differ from each other by terms of order P.
Erroneous use of these quantities may thus easily introduce
dramatic errors into the analysis of high-pressure data.
(See the discussion in Ref. [11].) Such misconceptions
are particularly disastrous to eigenvalue calculations, like
in applications of the Born stability criteria. (For a recent
example, see Ref. [7].) The purpose of this paper is to present
the general construction of a LT coupled to finite strains,
thereby resolving all these inaccuracies and inconsistencies.
The practical value of our new theory is illustrated in an
application to recent high-precision measurements of the
10-GPa phase transition in strontium titanate (STO).

II. LANDAU THEORY COUPLED TO
NONLINEAR ELASTICITY

Mathematically, the assumption of infinitesimally small
strain yields dramatic simplifications in the general theory
of elasticity, and the resulting theoretical framework of
linearized elasticity has found countless applications [12].
However, in the context of structural phase transitions,
these assumptions may not always be justified. Important
ambient-pressure examples in which the relevant strains are
so large that it is mandatory to introduce a proper finite-
strain measure such as the Lagrangian strain tensor and
eventually even deal with elastic anharmonicity are, e.g.,
martensitic phase transformations [13], twinning at
strongly first-order phase transformations [14], and recon-
structive phase transformations [15]. In the context of high-
pressure phase transitions, the question of how to construct
a corresponding Landau theory coupled to finite strain has
been addressed for the first time in Ref. [16]. The central
idea of this approach was that even if the total observed
strain as measured by a Lagrangian strain tensor η is far
from being infinitesimal, its actual spontaneous contribu-
tion ϵ̂ originating from the emergence of a nonzero-
equilibrium value Q̄ ¼ Q̄ðPÞ of the OP Q is still bound
to be “small” near a second-order or weakly first-order
phase transition. To separate ϵ̂ from η, three reference
systems connected by the scheme

(1)

were introduced in Ref. [16]: (i) the fully deformed system
ˆ̂X (denoted as Ŷ in Ref. [16]) at pressure P and relaxed-
equilibrium value Q̄ ¼ Q̄ðPÞ; (ii) the undeformed zero-
pressure “laboratory” or “ambient system” or “frame”

denoted by X, relative to which the state ˆ̂X corresponds
to the experimentally measured deformation tensor α with

components αij ¼ ∂ ˆ̂Xi=∂Xj and the resulting Lagrangian
strain η ¼ ð1=2ÞðαT · α − 1Þ; (iii) a “background reference

system” X̂ defined as the (hypothetical) state of the system
at pressure P and clamped OP Q≡ 0. Relative to X̂, one
would thus precisely measure the spontaneous strain ϵ̂ ¼
ð1=2Þðα̂T · α̂ − 1Þ accompanying a deformation gradient
matrix α̂. X̂ and X are related through a deformation
gradient tensor with components aij ¼ ∂X̂i=∂Xj and the
resulting Lagrangian strain tensor with components eij ¼
ð1=2Þðakiakj − δijÞ as e ¼ ð1=2ÞðaT · a − 1Þ. Given these
definitions, the total experimentally observed strain is thus
decomposed into the nonlinear [17] superposition

ηij ¼ eij þ akiϵ̂klalj: ð2Þ

In the background reference frame X̂, the Q-independent
elastic contribution F0ðϵ̂; X̂Þ to the Landau free energy is
assumed to be captured by the harmonic approximation

F0ðϵ̂; X̂Þ
V½X̂� ≈

X
ij

τijϵ̂ij þ
1

2

X
ijkl

Cijkl½X̂�ϵ̂ijϵ̂kl ð3Þ

involving the external stress tensor τij and the
elastic constants Cijkl½X̂� of the background system.
Furthermore, in accordance with the traditional approach
of LT, the fact that both OPs as well as strain components
remain small in the vicinity of the transition suggests that
we drop all coupling terms between strain and OP beyond
second order in Q. For simplicity, we take the OP to be
scalar and content ourselves with a single coupling between
Q and ϵ̂ of type

P
ijQ

2dijðX̂Þϵ̂ij, which yields the ansatz

FðQ; ϵ̂; X̂Þ
VðX̂Þ ¼ ΦðQ; X̂Þ þQ2

X
ij

dijðX̂Þϵ̂ij

þ F0ðϵ̂; X̂Þ
V½X̂� ; ð4Þ

in which we introduce the potential density ΦðQ; X̂Þ of the
pure OP contribution. In what follows, we shall assume
ΦðQ;X̂Þ≡ðA½X̂�=2ÞQ2þðB½X̂�=4ÞQ4þðC½X̂�=6ÞQ6 to be
a simple sixth-order polynomial in Q. Unfortunately, even
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with these assumptions, the resulting strain-equilibrium
conditions assume the highly nonlinear form [16]

X
mn

¯̂αmi
¯̂αnj

J½α̂� ½Q̄2dmnðX̂Þ þ Cmnkl½X̂�ϵ̂kl� ≈ 0; ð5Þ

where Jðα̂Þ ¼ V½ ˆ̂X�=V½X̂� ¼ det α̂. To overcome this prob-
lem, in Ref. [16], the observation that sufficiently close to
the transition the spontaneous strain components are
always numerically small was exploited by regarding the
spontaneous strain ϵ̂2 as infinitesimal, and the nonlinear
prefactors ¯̂αmi

¯̂αnjJ−1½ ¯̂α� were consequently put to 1. One
then arrives at a system of linear equations that must be
solved for the strain components ϵ̂kl as functions of Q̄
by inverting the tensor Cmnkl½X̂�. However, this step
is somewhat delicate because the required invertibility is
not automatically guaranteed. Indeed, we have recently
realized that one can do a lot better.
In fact, despite its expected numerical smallness, let us

continue to regard the spontaneous strain ¯̂ϵ as a full
Lagrangian strain tensor. Using the first-order approxima-
tions [18] ¯̂αij ¼ δij þ ¯̂ϵij þOð ¯̂ϵ2Þ and J½ ¯̂α� ¼ 1þP

k
¯̂ϵkkþ

Oð ¯̂ϵ2Þ, we expand the geometrical prefactor in Eq. (5) up to
harmonic order in ¯̂ϵ. A short calculation results in

Q̄2dij½X̂� þ
X
kl

Bijkl½X̂� ¯̂ϵkl ≡ 0; ð6Þ

in which the well-known Birch coefficients Bijkl½X̂� ¼
Cijkl½X̂� þ ð1=2Þðτjkδil þ τikδjl þ τjlδik þ τilδjk − 2τijδklÞ
of the background system X̂ have taken over the role
formerly played by the elastic constants [17,18]. Since the
background system X̂ is defined by the constraint Q̄≡ 0,
which inhibits the transition under investigation, applica-
tion of the Born stability criteria [9,18–22] now ensures that
its tensorial inverse

X
mn

Bijmn½X̂�Smnkl½X̂� ¼
1

2
ðδikδjl þ δilδjkÞ;

the tensor Sijkl½X̂� of elastic compliances, exists. Inserting
the solution of Eq. (6)

¯̂ϵmn ¼ −Q̄2
X
ij

dijðX̂ÞSmnij½X̂� ð7Þ

into the second equilibrium condition

Φ0ðQ̄; X̂Þ þ 2Q̄
X
ij

dijðX̂Þ ¯̂ϵij ≡ 0 ð8Þ

and reintegrating by Q̄ finally yields (up to an unimportant
constant) the renormalized background pure OP potential
density

ΦRðQ; X̂Þ ¼ AR½X̂�
2

Q2 þ BR½X̂�
4

Q4 þ CR½X̂�
6

Q6 ð9Þ

with quartic coefficient

BR½X̂� ¼ B½X̂� − 2
X
ijkl

dij½X̂�Sijkl½X̂�dkl½X̂� ð10Þ

while we still maintain AR½X̂� ¼ A½X̂� and CR½X̂� ¼ C½X̂�.
The equilibrium condition for the OP then takes the simple
form

ΦR
0ðQ̄; X̂Þ≡ 0: ð11Þ

All of these quantities are defined with respect to the
reference state X̂ ¼ X̂½P�. It remains to determine this
implicit P dependence. As to the elastic constants
Cijkl½X̂�, this information is, in principle, accessible by
density-functional-theory (DFT) calculations. The key
observation that allows us to assess the remaining implicit
P dependence of the coefficients A½X̂�, B½X̂�, C½X̂�, and
dij½X̂� is the following. Working in the laboratory system X,
one would be forced to go to prohibitively high powers in
the Landau expansion

FðQ; η;XÞ
VðXÞ ≡ A

2
Q2 þ B

4
Q4 þ C

6
Q2 þ � � �

þ 1

2!

X
ijkl

Cð2Þ
ijklηijηkl

þ 1

3!

X
ijklmn

Cð3Þ
ijklmnηijηklηmn þ � � �

þ
X∞
N¼1

Q2N
X
ij

ηij

�
dð2N;1Þ
ij þ

X
kl

dð2N;2Þ
ijkl

2!
ηkl

þ
X
klmn

dð2N;3Þ
ijklmn

3!
ηklηmn þ � � �

�
ð12Þ

to capture nonlinear elastic effects with sufficient preci-
sion. Nevertheless, by definition, all its coefficients are
strain-independent (but possibly T-dependent) constants.
We now compare common coefficients for the monomials
Q2N ϵ̂i1j1 ;…; ϵ̂injn in a combined expansion of the invari-
ance relation

FðQ; ϵ̂; X̂Þ≡ FðQ; eþ aþ · ϵ̂ · a;XÞ ð13Þ

of the free energy under a change of the strain reference
frame. Guided by the requirement that the maximum power
of Q appearing on both sides should be identical (i.e., 6 in
our present model), a straightforward but somewhat
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lengthy calculation, whose details may be found in the
Supplemental Material [2], results in the relations

JðaÞdst½X̂� ¼
X
ij

asid
ð2;1Þ
ij atj þ

X
ijkl

asid
ð2;2Þ
ijkl atjekl þ � � �

JðaÞAðX̂Þ ¼ Aþ 2
X
ij

dð2;1Þij eij þ
X
ijkl

dð2;2Þijkl eijekl þ � � �

JðaÞBðX̂Þ ¼ B; JðaÞCðX̂Þ ¼ C: ð14Þ

To judge the usability of these power series in the back-
ground strains ekl, assume that the numerical values for the

coefficients A, B, C, dð2;1Þ, and Cð2Þ
ijkl defining the zero-

pressure theory are known, as is the case in many
applications. In turn, the requirement that our high-pressure
extension of standard ambient-pressure Landau theory
reduces to the ambient potential in the low-pressure limit
is a fundamental constraint that results in a drastic reduction
of the number of unknown parameters of our theory.
Beyond knowledge of the ambient-pressure coupling coef-
ficients, the pressure dependence of the background
elastic constants C0

ijklðPÞ≡ Cijkl½XðPÞ� is another required
“external” input to our theory. In rare cases, experimental
data may be available that allow their sufficiently precise
extrapolation beyond the critical pressure Pc for the
specific system under consideration, but otherwise, we
will resort to DFT to provide this information. From
knowledge of the relevant tensor components C0

ijklðPÞ,
we compute the components eijðPÞ of the background
strain (see Ref. [16]). Of the remaining list of relevant

couplings introduced above, only the coefficients dð2;αÞij… ,
α ¼ 2; 3;…, appearing in Eqs. (15)–(17), which cover the
possible nontrivial P dependencies of the quadratic order-
parameter coefficient A½X̂� and the couplings dij½X̂�
between order parameter and strain, must be dealt with.
Superficially, we may thus still face a large number of
unknowns. However, the symmetry of the low-pressure
phase can be used to further reduce their number. In fact,
assume for simplicity that the low-pressure phase is cubic.
Then, eij ≡ eδij is diagonal, and Eqs. (14) collapse to

adij½X̂� ¼ dð2;1Þij þ dð2;2Þij eþ dð2;3Þij e2 þ � � � ð15Þ

a3AðX̂Þ ¼ Aþ 2dð2;1Þii eþ dð2;2Þii e2 þ dð2;3Þii

3
e3 þ � � � ; ð16Þ

in which only certain sums

dð2;2Þij ≔
X
k

dð2;2Þijkk ; dð2;3Þij ≔
X
kl

dð2;3Þijkklll;… ð17Þ

of these unknown coefficients remain as parameters.
Inspection of Eqs. (15) and (16) reveals this P dependence,

which is, however, not given by a fractious Taylor expan-
sion in powers of P but implicitly encoded in terms of a
well-tempered power-series expansion of the finite but
rather small dimensionless quantities eijðPÞ, which is an
enormous numerical advantage of our present Helmholtz
(i.e., strain-parametrized) approach over the more simple-
minded Gibbs-type (i.e., pressure-parametrized) attempts
based on introducing P dependence into LT by expanding
the coefficients into mere powers of P. If we keep only

the lowest expansion coefficients dð2;αÞij for α ¼ 2, 3, the

coefficient A½X̂� is determined up to terms of order e4ðPÞ
and dij½X̂� is fixed up to corrections of order e3ðPÞ.
In practice, the resulting parametrization is numerically

still somewhat inconvenient. Rather, we would like to treat
the value of the critical pressure Pc as an input parameter to
the fit, since experimentally, this quantity can frequently be
assessed with quite good precision by combining different
experimental techniques, while it tends to come out less
precise in a least-squares fit of pure strain data contami-
nated by unavoidable errors. Thus, it is usually a good idea

to trade one of the fit parameters dð2;αÞij for Pc by solving the

implicit equation A½X̂ðPcÞ�≡ 0.

III. APPLICATION TO STRONTIUM TITANATE

We illustrate the advantages of our present approach by
performing a fit of recent high-precision measurements [23]
of the pressure-induced Pm3̄m↔I4=mcm transition around
Pc ¼ 9.6 GPa in the model-perovskite strontium titanate at
room temperature. At ambient pressure, SrTiO3 was already
shown in the 1960s to undergo a cubic → tetragonal
transition at Tc ≈ 105 K recognized to be an archetypal
model for other soft-mode-driven structural phase transitions
[24]. The crystal class of perovskites itself is also of
widespread interest for a number of technological applica-
tions [25]. Moreover, recent research [26] indicates that more
than 93% by volume of Earth’s lower mantle consists of
minerals of the perovskite structure.
A glance at Eq. (1) of Ref. [23] indicates that the

ambient-pressure Landau potential underlying the 105-K
transition is just of the structure discussed above, and we
immediately inherit the whole set of ambient-pressure

parameters A0, B, C, d
ð2;1Þ
11 , and dð2;1Þ33 (see Ref. [27]) from

the left column of Table III of Ref. [23]. To provide the only
missing further input for applying our present nonlinear
theory, we calculate the background elastic constants
C0
11ðPÞ and C0

12ðPÞ (reverting to Voigt notation) from total
energies in DFT, using the WIEN2K package [28]. In
addition to using the standard local density approximation
for the exchange-correlation functional, calculations were
carried out based on the Perdew-Burke-Ernzerhof (PBE)
[29,30] and Wu-Cohen [31] approximations as well as on
the PBESol [32] functional, a version of PBE optimized for
application to solids. While we refer to the Supplemental
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Material for more details on these calculations [2], here, we
content ourselves with reporting that the results based on
the latter two functionals are found to be practically
indistinguishable within the considered pressure range.
Moreover, even though the PBE functional shows a slightly
better match to the observed pressure dependence of lattice
parameters than the PBESol and Wu-Cohen functionals,
the PBESol andWu-Cohen functionals give the best overall
results when plugged into our nonlinear LT, which is most
probably due to their different predictions of elastic
constants. With increasing P, C0

11ðPÞ is found to increase
roughly linearly from 349.3 to about 895.9 GPa, while
C0
12ðPÞ increases from 103.1 to 208.1 GPa between 0 and

70 GPa. (See the dotted lines in Fig. 3 and the more detailed
discussion in the Supplemental Material [2].)
As the low-pressure symmetry of STO is cubic, Eq. (17)

applies. Following Ref. [23], we also the take the exper-
imental value of Pc ¼ 9.6 GPa for the critical pressure as
an input parameter to our theory. In view of the arguments
presented below Eq. (17), very little freedom for fitting our
theory to the available experimental data is left, since only

three parameters, say, dð2;2Þ11 , dð2;2Þ33 , and dð2;3Þ11 , remain.
Despite this constricting corset, a fit based on these

remaining three parameters works amazingly well, as is
revealed in Fig. 1. The figure’s insets also expose the
complete failure of the plain infinitesimal approach [23].
Before we discuss the behavior of the LT coupling constant
emerging from this fit, let us first examine the correspond-
ing prediction of the static longitudinal equilibrium elastic
constants of STO. By a rather straightforward generalizing
of the approach of Ref. [33] to the nonlinear regime, whose
details are given in the Supplemental Material [2], we can
compute their P-dependent transition anomalies. The
results of these calculations, which are gathered in
Fig. 3, reveal that while the anomaly in the bulk modulus
is not very dramatic (but cf. Ref. [34]), the anomalies

observed for the individual elastic tensor components are
quite pronounced: C11, C12, and C33 exhibit a notable
negative jump at P ¼ Pc, while C13 undergoes an upward
jump. While these findings might have been anticipated
from a qualitative comparison to the T-driven transition
[35], they still await their verification in experiment.
We now turn to the discussion of the P dependence of the

various coupling constants of our theory that are more
difficult to anticipate by someone used to working with the
infinitesimal theory. First of all, besides the discussed
transition anomalies, Fig. 3 also illustrates the strong P
dependence of the background elastic constants that are
computed from the DFT simulations and that are qualita-
tively to be expected for any high-pressure phase-transition
scenario. Of course, this fact has enormous implications for
the behavior of the remaining couplings in the theory. As to
ARðPÞ≡ AR½XðPÞ�, Fig. 2 shows that the resulting P
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dependence still does not deviate too far from the linear
slope one would expect from standard LT (see the
Supplemental Material [2]). However, in sharp contrast
to the “usual” assumptions made by practitioners of LT,
BRðPÞ≡ BR½XðPÞ� also decreases strongly with increasing
P and even crosses 0 near Pc. From an infinitesimal
approach, we could have neither deduced this increasing
tendency of the transition to become tricritical or even
weakly first order under pressure, as it is implied by this
behavior of BRðPÞ. Nor could we have anticipated the
considerable but smooth growth in modulus of the cou-
plings d11ðPÞ and d33ðPÞ over the considered pressure
range shown in the inset of Fig. 2.
Another rule of thumb verified in hundreds of applica-

tions of LT to temperature-driven structural phase transi-
tions, which many researchers usually take for granted in
judging experimental data, is that the squared OP and
spontaneous strain are proportional for situations charac-
terized by a linear-quadratic coupling between strain and
OP. This expectation is rooted in the fact that for the
infinitesimal theory, an equation holds that formally
resembles our Eq. 7). However, in the present situation,
the proportionality factor−PijdijðX̂ÞSmnij½X̂� between ¯̂ϵmn
and Q̄2 cannot be taken to be a mere constant like in the
infinitesimal case but may strongly depend on P. We
emphasize that this nontrivial P dependence not only
results from that of the background elastic constants but
also from the pressure dependence of the coupling coef-
ficients dij½X̂�, which, as the inset of Fig. 2 demonstrates,

can be quite substantial. For STO, the breakdown of the
simple proportionality ¯̂ϵmn ∝ Q̄2 for the high-pressure
scenario is illustrated in Fig. 4.
In passing, we note that within the standard folklore of

LT, it is also quite tempting to identify the squared soft-
mode frequency ω2ðPÞ with the inverse order-parameter
susceptibility χ−1ðPÞ up to proportionality. However, this
identification may also be questionable in the high-pressure
setting. Besides the second derivative of the free energy,
inertial terms also appear in the dynamical equation
governing the soft-mode behavior, and these inertial terms
may exhibit an additional pressure dependence. That being
said, a fit of χ−1ðPÞ as deduced from our theory to the
experimental data for ω2ðPÞ taken from Ref. [23] is
depicted in the upper left inset of Fig. 4.
The above discussion of the various nontrivial

consequences of the delicate but inevitable P dependence
of high-pressure LT, which is successfully taken into
account in our new theory, should cast severe doubts on
any physical prediction that is merely based on a tradi-
tional infinitesimal strain approach or simple ad hoc
generalizations of it.

IV. SUMMARY AND DISCUSSION

Our present nonlinear LT offers a complete quantitative
description of the experimentally measured strains and their
transition anomalies. In fact, it seems very hard to further
simplify the theory we have presented without sacrificing
mathematical consistency, numerical precision, or both.
Let us discuss a few important remaining points while
summarizing.
As we have shown above, in building a LT for high

pressure, it is essential to replace the infinitesimal strain
tensor by a finite-strain measure like the Lagrangian strain
tensor. Only then it is possible to disentangle the sponta-
neous strain, which, by definition, accompanies the appear-
ance of a nonzero order parameter beyond the critical
pressure Pc, from the background strain, which results from
the application of external pressure by introducing an
elastic background reference system and plays a role
similar to other “baselines” introduced in the description
of phase-transition anomalies. It is only this spontaneous
strain, which is numerically small enough to allow a
harmonic approximation of its associated elastic energy.
The coupling coefficients of the resulting LT, which are
defined with respect to the background reference system,
formally exhibit a pressure dependence that can be
expanded in a well-behaved power series built from the
components of the background strain tensor. For obtaining
correct estimates of these pressure dependences from a
fit, independent “external” information on the pressure
dependence of the elastic constants from DFT or experi-
ment is absolutely essential.
We close with a short technical comment. Even though

the determination of the pressure dependence of the LT
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FIG. 4. Main plot: Difference Δ ¯̂ϵðPÞ ¼ ¯̂ϵ3 − ¯̂ϵ3 of spontane-
ous strain components as obtained from experiment vs our fit
(blue data points and function). For comparison, the dotted red
line shows our result for the squared order parameter Q̄2ðPÞ
after a suitable rescaling. Left upper inset: Experimental data
for the squared soft-mode frequency compared to a suitable
rescaled fit result for the inverse order-parameter susceptibility
χ−1ðPÞ as obtained from our fit. Right lower inset: Δ ¯̂ϵ
parametrized as a function of the squared equilibrium order
parameter Q̄2. The dotted line corresponds to an assumed
proportionality between Δ ¯̂ϵðPÞ and Q̄2ðPÞ as it would follow
from a naive application of LT.
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coupling constants seems to be the central issue at the
outset, we chose to work in the Helmholtz picture, in which
strain rather than stress functions as the external control
parameter. This decision was based on the unpleasant fact
that whereas stress and strain are thermodynamically
conjugate within the approximation of linearized elasticity,
such a relation does not hold for the fully nonlinear
Lagrangian strain tensor and the Cauchy stress tensor. In
fact, the true conjugate of the Lagrangian strain tensor is the
so-called Piola-Kirchhoff stress of the second kind, which
differs from the physical Cauchy stress tensor by nonlinear
correction terms. Technically, this fact implies that it is very
cumbersome to introduce a Gibbs potential [17,20,21].
Together with the nonidentity of elastic constants and Birch
coefficients, the lack of a simple parametrization in terms of
stress is one of the main pitfalls that nonlinear elasticity
theory provides for people familiar only with the linearized
theory, even though connoisseurs of the classic books of
Landau and Lifshitz may already recall a corresponding
warning. [See the sentence following Eq. (4.11) of
Ref. [12].] On the other hand, our strategy of consistently
using strain instead of stress as the control variable is finally
rewarded by the tame numerical behavior of the expansions
(15) and (16). We would, therefore, advocate the statement
that our Helmholtz approach is likely to be the only one
that, in practice, leads to a manageable formulation of the
theory. Moreover, this strategy is also in complete agree-
ment with the way stress is obtained in standard static DFT
calculations. Imposing a certain size and shape of the DFT
supercell, it is the strain that is controlled, while stress is
only derived a posteriori from, e.g., Hellmann-Feynman
arguments.
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