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Abstract. Stimulated by the recent interest in graphene, the elastic behavior of crystalline
membranes continues to be under debate. In their flat phase, one observes scaling of
the correlation functions of in-plane and out-of-plane deformations w(x) and f(x) at long
wavelengths with respect to a given reference plane governed by a single universal exponent
n. The purpose of the present article is to explain the ideas and techniques underlying our
Fourier Monte Carlo simulation approach to the numerical determination of n in much greater
detail than was possible in a recent letter that is currently under review. Our simulations
are based on an effective Hamiltonian first derived by Nelson and Peliti formulated exclusively
in terms of the Fourier amplitudes f(g) of the field f(x), and we calculate the out-of-plane
correlation function (|f(q)|?) = G(q) and their related mean squared displacement ((Af)?).
The key to the progress reported in this work is the observation that on tuning the Monte
Carlo acceptance rates separately for each wave vector, we are able to eliminate critical slowing
down and thus achieve unprecedented statistical accuracy. A finite size scaling analysis for
((Af)?) gives n = 0.795(10). In the alternative approach, where we study the scaling of G(q),
we observe an unexpected anisotropic finite size effect at small wave vectors which hampers a
similarly accurate numerical analysis.

1. Introduction

Membranes are two-dimensional surfaces embedded in three-dimensional space, and like their
one-dimensional cousins, the linear polymers, their phase diagram is determined by the
competition between energy loss and entropy gain accompanying the membrane’s exploration of
possible deformed configurations. Sophisticated theoretical and computational approaches have
been developed to classify the resulting wealth of phases and determine their properties. A full
survey of all the corresponding past achievements is well beyond the scope of this article and
we may refer the novice reader to the excellent source [1] instead. Instead, we only choose to
focus on those aspects of the statistical mechanics of membranes that are needed in order to
understand the context of our present work.

In classifying the various phases of fluctuating phases, most pertinent theories aim at
computing the analytic properties (i.e. decay length scales and/or scaling powers) of the out-of-
plane deformations (OPDs) and the surface unit normals and their correlation functions, since
the membrane in-plane deformations (IPDs) are usually harder to assess experimentally. As a
matter of fact, the variety of possible conformational phases of membranes is much richer than
that of polymers, and it is worth noting that the corresponding universality classes of asymptotic
long wavelength conformations also depend crucially on microscopic structural features of the
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membrane, in contrast to what one might naively expect from arguments based on the standard
renormalization group (RG) folklore. The explanation of this seemingly paradoxical statement
is that distinct microstructures support different types of elastic interactions, which may induce
long-range effective interactions between the OPDs. For instance, a membrane may have the
microscopic characteristics of a two-dimensional liquid, with breaking and recombining bonds
between its molecules. Familiar examples of such liquid membranes from soft matter physics are
lipid bilayers [2]. Such a liquid membrane has a non-vanishing bending rigidity, but exhibits no
static resistivity to shear, and its energy can thus only depend on its shape. It turns out that if
self-avoidance effects are ignored, in which case one technically speaks of a “phantom” membrane
model, liquid membranes are predicted to be always in a rotationally invariant “crumpled” phase,
i.e. the correlations of their unit normals decay exponentially on a scale given by the so-called de
Gennes-Taupin persistence length [3]. If only short-range interactions were at work, spontaneous
breaking of this continuous symmetry would be ruled out by the Mermin-Wagner-Hohenberg
theorem [4]. However, in [5] it was noted that the presence of (effective) long-range interactions
between the unit normals may stiffen the membrane, and a so-called crumpling transition to
a low temperature “flat” phase, whose long wavelength undulations define a new nontrivial
universality class, may take place. In crystalline membranes, which support a nonzero shear
modulus g, such long-range forces are supplied by the shear-mediated coupling of the the IPDs
to the OPDs. This is the case that we will concentrate on below, graphene being the most
prominent, but certainly not the only example (see, e.g., [0, [7]). Relaxing the requirement of a
regular lattice structure to that of a microscopic network of at the given temperature thermally
unbreakable bonds defines so-called tethered membranes. Biological cell walls, which consist of
lipid bilayers interacting with a shear-resistant protein network, the so-called cytoskeleton, are
certainly the most important example of this species [§]. Inclusion of anisotropy in the elastic
energy of a membrane may lead to tubular phases which appear flat in one and crumpled in the
other direction. At finite temperature, a crystalline membrane may also undergo a dislocation
unbinding transition to an hexatic phase [9], in which, even though p vanishes, a residual
directional bond stiffness remains, leading to an algebraic instead of an exponential decay of the
correlations between the unit normals in this so-called crinkled phase for a phantom membrane.
At present, there is good evidence but, at least to the author’s best knowledge, no rigorous
proof that when passing from phantom to physical membranes by inclusion of an energy penalty
enforcing self-avoidance, the crumpled phases become unstable while self-avoidance remains
irrelevant (in the RG sense) within the flat phases [10].

2. Theory

In the present work, we consider a continuum elastic energy model for an isotropic crystalline
phantom membrane. In the Monge parameterization of the flat phase, membrane deformations
with respect to a given two-dimensional reference plane with coordinates * = (z1,z2) are
parameterized by a deformation vector field (u(x), f(x)), where u is a two-dimensional vector
of IPDs, while the “height function” f parameterizes the OPDs. As the membrane free energy is
invariant under homogeneous translations, it can depend on deformations only via deformation
gradients. Following [I1], [I2], an effective Hamiltonian containing all relevant couplings for
describing the flat phase is given by

H(f,u] = Holf] + Hslf, ] (1)

where the bending energy

Folf) = [ @ (807 (@) ¢l
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is augmented by an harmonic stretching part

Aulful = 5 3 [ o (2o (@) + o)y (@) )
ij

Here ko denotes the (bare) bending rigidity, A = 83—;1 + 88722 is the two-dimensional Laplacian
and A\g and pg are the bare Lamé constants. Moreover, in the Lagrangian strain tensor

uij(®) = €ij(x) + fij(x) (4)
all nonlinear terms beyond the infinitesimal strain tensor

_1 (5%'(%) N 3%’(?6))

61']'(56) N 2 (91']' 8.%'1
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can be dropped for the IPDs, while one needs to keep a quadratic term symmetric “tensor
potential”

_ 19f(=) 0f (=)

fij(x)

in the OPDs. In the continuum formalism presented in [I2], which we sketch here for
completeness, a transverse projectorP;; = dij — 0;0j/A is employed to split f;;(x) into
partition function, the fact that €;;(x) is purely longitudinal allows i (x) to be “gauged away”,
i.e. absorbed into redefined path integration variables €;;(x) — €, ; (x). Gaussian integration over
these shifted variables produces a mere scalar factor, leaving a new effective Hamiltonian [I1]

longitudinal and transverse parts f;:(x) and fg (z), respectively. In the calculation of the

L

K K 2
Hif =2 [ oar?+ 52 [ o [P g@) @
for the OPDs which only involves the remaining transverse part f;‘; (x), where

_ Ap(po + o)

8
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is the bare 2d Young modulus [I3]. This Hamiltonian resembles a field theory with a non-
standard q* type of dispersion, and a non-local fourth order contribution that, as promised
above, resembles the effective long-range interaction of OPD’s mediated by the eliminated IPD’s.
We introduce the continuous Fourier amplitudes

lgl<A P2
o= [ i@ )
lg|>(27/L)

where A~! ~ a denotes some microscopic length for which the continuum approximation ceases
to be valid, and consider the correlations

~ ~

G(p)8*(p + q) = (f(p)f(a)) (10)
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of the OPD’s. For a fluid membrane, pg vanishes identically, which implies that Ky = 0 vanishes
as well and the equipartition theorem applied to the remaining harmonic bending contribution
yields

Glq) = ot (11)

In the case of a solid membrane it is tempting to try to do the same, i.e. ignore the term
x Ko as a first guess, which effectively amounts to a harmonic approximation. However, such
a strategy fails to capture the essential physics of crystalline membrane elasticity, which, as we
have stressed above, is caused by the effective long-range interaction encoded in the anharmonic
part of . Technically, the coupling Ky is relevant in the sense of the renormalization group
and effectively leads to a renormalization of the bare bending rigidity k9. More precisely, one
can show that the resulting renormalized bending rigidity acquires a nontrivial g-dependence,
such that actually

G(q) = I (12)
At this stage the critical exponent 7 is introduced as

r(q) ~q" (13)

The exponent 7 is indeed the central quantity governing the elastic behavior of the flat phase
at long wavelengths, as other observables of interest like the g-dependent scaling of the Lamé
coefficients, the mean square height fluctuations (see below) and the correlation function of the
unit normals are governed by scaling laws, whose critical exponents are related to n by simple
algebraic scaling relations [13].

Due to the complicated structure of the anharmonic nonlocal fourth order term in , it is
difficult to obtain precise estimates of n. Thus, the literature exhibits a remarkable dispersion
of published numerical results for 7, which are summarized in [8, [14]. Specifically, an early
one-loop perturbative calculation by Nelson and Peliti [11] gave n = 1, whereas Le Doussal and
Radzihovsky [I5] obtained n = 4/(1 + 4/15) ~ 0.821 from self-consistent RPA. RG calculations
based on an e-expansion [I6] and a large-d expansion [I7] have been carries out, but their
numerical extrapolation to the physically relevant case of a two-dimensional membrane in three-
dimensional space is not straightforward. Recently, the result n = 0.849 was derived from
a nonperturbative RG approach [I8]. Due to the difficulties encountered in these analytical
approaches, extensive simulations have also been carried out. For instance, in [19] large-scale
Monte Carlo simulations were performed based on a simple model with Gaussian spring pair
potentials, and the estimates n = 0.750(5) and 1 = 0.72(4) were obtained from monitoring the
mean squared fluctuations of IP and OP phonons (see below) and making use of the appropriate
scaling relations. Motivated by the enormous interest in the properties of graphene, the problem
was recently re-investigated with atomistic MC and molecular dynamics simulations based on
a realistic many-body potential for carbon. While preliminary [20] conclusions based on the
analysis of the observed normal-normal correlation function G (q) of graphene membranes, which
seemed to indicate a completely unexpected “preferred wavelength” for elastic fluctuations in
graphene turned out to be based on artifacts caused by lack of sufficient convergence, subsequent
work [21] bases on a simple pseudo-harmonic model finally yielded a result  ~ 0.85 in reasonable
agreement with the bulk of the existing literature. These simulations are also very instructive,
because, as is explained at length in the authoritative reference [13], they illustrate the crossover

of G (q) from mean-field (MF) (~ ¢~*) to critical (~ ¢g~**") behavior, which roughly sets in at
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|3kpT K
qG ~ 78 2 0 (14)
7TI<,O

analytically defined by the breakdown of the harmonic approximation Ky =~ 0 to the effective
Hamiltonian . For graphene, using the parameters 7' = 300K, Ko = 12.4A4~" and k¢ = 1.1eV
yields g ~ 0.18 471 [22, 23]. The relevance of such simulations for determining critical behavior
depends, of course, on how far we are able to penetrate the scaling region. Obviously, a
convenient measure for this ability is thus the ratio gqg/(27/L) of g to the smallest accessible
wave vector component 27/L. Unfortunately, for the large scale atomistic MC simulations
presented in [2I] this ratio turns out to be only approximately 9. In other words, in each linear
direction there are only 9 data points that may carry relevant information on the scaling region.
For the purpose of determining n with sufficient precision it is clearly desirable to generate a
larger fraction of relevant data.

a “Ginzburg wave vector”

3. Simulation

Common sense indicates that it may not be extremely efficient to base simulations of universal
properties on atomistic potential models anyway. In calculating long wavelength characteristics,
one should get rid of all irrelevant microscopic details that only make simulations more expensive,
ideally ending up with an effective Hamiltonian like , which also allows to choose the coupling
parameters kg, Ko independently in a convenient way. Unfortunately, as mentioned above, the
presence of the projector Pg in makes the fourth order contribution to 1} nonlocal, reflecting
the long-range effective interaction of the OPD’s induced by the IPD’s. Thus, an attempt to base
a real-space MC simulation directly on it is a rather hopeless enterprise. To clarify its nonlocal
structure, let us rewrite in terms of the Fourier amplitudes @) Abbreviating Q:=Q /1Q,
one finds [13]

i =2 [ SLifar+ 2 [ Fa@r (15
where
@ = [ ghr@afwi@-a (16
and in the definition of the function
R(Q.,q) = (Q x q)° (17)

the vectors Q and q are formally embedded in 3-dim. space for the sake of a compact and
intuitive notation. Here it is important to keep in mind that represents an effective field-
theoretic Hamiltonian, in which a wave vector cutoff |g| < A for the modes f(q) is implicit, and,
of course, the numerical value of its parameters will also depend on the choice of A, which our
notation reflects by introducing the subscript A in Ha, £p and K.

Hypothetically replacing R(Q, q) by 1, F(Q) reduces to the Fourier transform of the squared
OPD field f2(x). In this sense, we may say that F (@) has the structure of a “generalized square”
[24]. Furthermore, the above effective Hamiltonian actually resembles a formal continuum limit
of a discrete lattice model with lattice constant a, and in writing down and , infrared
and ultraviolet cutoffs 27/ < |¢;| < m/a are implicitly understood. Thus, the above effective
Hamiltonian for the flat phase of a crystalline model is accessible to our recently developed [25]
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Fourier Monte Carlo (FMC) algorithm. In fact, the present situation is reminiscent of that of
compressible spin models [26], 27], in which elimination of the phonons by Gaussian integration
induces a long-range effective interaction for the spin degrees of freedom. For a detailed account
on the nuts and bolts of FMC we refer to [28, 29 24]. Here we content ourselves with the
following brief description.

In applying the FMC algorithm to the present problem, universality authorizes us to consider
the crystalline structure as a square lattice I' of volume V = Lag X Lag with Ng = L x L sites
and lattice constant ag. In the present work, we use the the discrete Fourier conventions

f@) = Y F@e™ . fla) =Y sy (18)

qef‘ xzel

for which the discrete Fourier amplitudes f (g) are extensive quantities with the same physical
dimension as the discretized field f(x). These conventions, although asymmetric, are very
convenient since, when combined with the rescaling

flq) = dif(q) (19)

they allow for easy translation of continuum formulae following the rules
d*q d’x
VI — — 20
YoV | e X [ (20)
qer z

FMC employs these complex Fourier amplitudes f (q) as basic MC variables. MC moves
correspond to shifts

fla) = fla) + €0g,qo + € 0g,—qo (21)

where € is a random complex number with bounded modulus, and the wave vector gy € T is
chosen at random, but no reference to the direct lattice is made whatsoever. In the vast majority
of situations encountered, this algorithm may be quite inefficient compared to real-space based
ones, but for problems like coarse graining [25] and RG transformations [30, BI], [32] or, like in
the present case, the computation of critical exponents [27], in which the subset of g-vectors
parameterizing the nonzero Fourier amplitudes can be confined to a narrow region bounded by
wave vector cutoffs while the effect of the remaining modes is accounted for by the use of an
effective Hamiltonian, it is ideally suited. This is even more so, if long-range interactions are
involved [30), B3]. In the simulation of critical phenomena, it is essential to gather as much
information as possible on the behavior of the system at “small” wave vectors, i.e. those around
the critical wave vector (¢ = O in the present case). Real space simulations necessarily take
place in finite systems, of, say, linear size Lgag, whose smallest accessible nonzero wave vector
components are 27 /Lgag, but also have to deal with all other, increasingly unimportant modes
up to the boundary of the Brillouin zone |g;| < m/ao determined by the lattice constant ag.
However, if we are able to choose a wave vector cutoff A = Ag/b, b > 1, and replace the original
Hamiltonian by an effective one involving only modes with wave vectors inside A, then this
corresponds to working with the original Hamiltonian at a system of lattice constant a = bag
and with L = Lg/b unit cells in each direction, thus holding N = N/b? unit cells altogether.
In turn this, implies that our FMC simulation effort with effective Hamiltonian and cutoff A
resembles that of a direct lattice simulation with atomistic Hamiltonian on a system whose
volume is b? times larger. In what follows we set ag to 1 and keep in mind that working at a
cutoff A implies an effectively larger lattice constant a ~ 7/A.
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We now enter the discussion of the specific details of the present simulations. Since the
effective Hamiltonians , both involve spatial derivatives, we must first find a suitable
discretization scheme. In a continuum Fourier transform, a partial derivative 0;g(x) of a function

g(x) translates into multiplying its Fourier transform g(q) by a factor g(q) = igj, and taking the

Laplacian gives a factor ﬁ(q) =— 23:1 q]2- = —¢%. On the lattice we may replace derivatives by
Fourier transforms of nearest neighbor finite difference operators, which yields

) 'y A 4 Lo aqg;
9i(a) = o e A(q) = —*Zst& (22)

Of course, for ag — 0, these operators asymptotically approach their continuum limits. However,
working on a finite lattice with finite a, deviations from linearity in 9;(q) and from cubic isotropy
in A(q) become noticeable for large enough g. In order to extract the exponent 7 from the
g-dependence of G(q), it is essential to reduce these finite size effects, and in particular the
accompanying cubic anisotropy. However, at the same time we would still like to maintaining
overall periodicity in reciprocal space. For 0;f(x), one may replace the above simple 2-point
discretization by a four-point scheme (cf. [34], p. 15), which on Fourier transformation translates
into

(4 — cos agq;) sin ag;

bila) = - : (23)

Let us take this approach one step further by considering a corresponding improved version
of the lattice Laplacian A(q) derived from taking contributions from lattice neighbors beyond
nearest neighborhood into account. Technically, in two dimensions this works as follows. One
introduces polar coordinates ¢ — (¢, ¢) and Taylor-expands an ansatz of type

— a2A(q) = b+ c(cosaq) + cosaqe) + d[cos a(qr + q2) + cosa(qr — q2)]
+e(cos 2aq; + cos 2aqs2) (24)
+f [cos a(qr — 2q2) + cosa(qr + 2q2) + cosa(2q1 — q2) + cosa(2q1 + q2)| + - ..

in g, successively choosing the coefficients b,c,d, e, f to eliminate low order ¢-dependence,
which by cubic symmetry must appear through terms proportional to cos(4¢), cos(8¢), ... and

unwanted low order powers of ¢ except the leading ¢*> one. Choosing b = 2—51,0 = —%,d =
—%,e = % and f = %5, we obtain
~ q6
— a2A(q) =q¢® - % +0 (qg, cos(4¢), cos(87r)) (25)

such that cubic anisotropy is minimal for small enough cutoff A.

Since the notion of transverseness for a discretized system may not be well-defined
independently of a chosen underlying discretization scheme, the safest way to discretize the
membrane problem should be based on the original effective Hamiltonian rather than
. Nevertheless, even without resorting to the trick of splitting fi;(x) into transverse and
longitudinal part, elimination of the IPD’s by discrete Fourier transformation of all fields and
Gaussian integration over the homogeneous and inhomogeneous contributions to €;;(q) is in
principle straightforward, albeit tedious. The result is

Wil = 5y 3 Malf@ + ZA,Q%: FQP (26)



24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012032 doi:10.1088/1742-6596/454/1/012032

and
Q=5 3 rQpi@iQ-a (27)

The function R(Q,p) is now defined as follows. We introduce the abbreviation 5(q) = iq and
form the 2 x 2 real-valued matrix

) -
M@ g (aa 26 )
Then it is not hard to see that in the long wavelength limit the real function
R(Q,q) :=p(q|QIQ —q) (29)
where
p(plQlq) : Zpl is (30)

indeed reduces to the continuum version encountered in equation ((17)):

R(Q.q) — (Q x q)* for Q,q—0 (31)

This completes the description of our discretization scheme.

4. Optimization of FMC }

In our present FMC simulations we monitored the set of squared moduli | f(q)|* for wave vectors
q inside a suitably chosen cutoff A, together with their sum and the total energy of the
system. From the resulting separate time series of these MC data, which we also analyzed to
ensure the complete equilibration of our simulations before MC measurements, we calculated
estimates of the corresponding statistical error using the standard jackknife procedure [35] 36].
These estimates were cross-checked using the standard analysis of integrated autocorrelation
times [37, B5] and the blocking method [38, B6] and we report nice numerical agreement of
the different error estimates derived from these methods. An addition, we also introduce the
following refinement to FMC. In the basic algorithm outlines by , the complex number € is
chosen at random within a circle of fixed radius r. in the complex plane. In the start-up phase
of the simulation, one can incrementally adjust r. as to achieve a decent overall acceptance rate
of FMC moves (usually somewhere between 30 — 60%). Still, as could have been anticipated
from the well-known phenomenon of critical slowing down [36], one observes a dramatic growth
of the integrated autocorrelation times 7y (q) for |g| — 0, which in turn implies that, similar
to the case of a real space algorithm based on non-collective moves, efficiency of plain FMC
breaks down where we need it the most. Looking at the individual acceptance rates for moves
of type for different wave vectors qg, one realizes that this behavior results from the fact
that for a uniform choice of 7., the acceptance rates for “small” gg-vectors are close to 100%,
while they may fall well below 30% for large ones, which, however, make up the vast majority
of g-vectors, as the number of wave vectors of length ¢ grows as ¢*~ ! in d dimensions (cf.
inset of figure . Since the equilibrium values of |f(qo)|? are dramatically larger for smaller
than for larger wave vectors, this still implies that, since they all move on the same scale r,
the modes close to criticality make no headway in comparison to the noncritical ones. At this
point, the following idea comes to rescue. In principle, can be regarded as a different

| 2
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type of MC move for each vector qp. Thus, without violating detailed balance, we can in
principle pick a different value r¢(qo) separately for each qo, offering the possibility to also tune
the corresponding values r.(qo) separately. Of course, this tuning is not a trivial matter, since
changing r.(qo) for one g will influence all other 7.(q) in a possibly nonlinear way. Nevertheless,
it is straightforward to implement a corresponding individual optimization for each r¢(gg) during
the start-up period of the simulation. And once this is done, we indeed observe an almost uniform
common value of the integrated autocorrelation times iy (q) independent of the wave vector
under consideration. In other words, on tuning r.(qo) individually, our FMC algorithm becomes
free of critical slowing down! Actually, considering our previous work [29, 24], the underlying
basic idea of this Optimized Fourier Monte Carlo (OFMC) algorithm is embarrassingly self-
evident and should have come to mind much earlier. In fact, after completing this work we
realized that even the authors of [21], who certainly were aware of our work, had come up with
a similar idea. However, they had only considered occasional “wave vector moves” applied to
a simple “pseudo-harmonic” model on top of a local MC move set defined in real space. Thus
it is understandable that, despite of the resulting improvements that allowed them to correct
the errors contained in their previous work [20], they obviously were not able to observe the
dramatic reduction of autocorrelation times we report here.

111 (Tint )

O —-—DNDNWPHrO1IONOO®OO

-5 45 4 35 -3 -25 -2
Ing

Figure 1. Main plot: Dramatic reduction of integrated autocorrelation times 7in(q) for moduli
|f(q)|? for our new OFMC algorithm in comparison to plain FMC for system size L = 640 and
cutoff A = 7/8. Deviations from linearity are due to the finite MC run time of 22° MC steps
(plain FMC) and finite tolerance 5% for a 50% target acceptance (OFMC). Inset: g-dependent
acceptance rates as measured for plain FMC.
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5. Results

From the FMC point of view, the observables that suggest themselves naturally for the purpose
of extracting 7 are, of course, G(q) = (|f(q)|?), and the mean square displacement ((Af)?). Let
us first consider the latter.

5.1. Mean squared displacement ((Af)?))
In continuum formalism ((Af)?) is calculated from G(q) as

2 o~
(an?=clo) = [ (;ﬂj?G(q) (32)

For L — oo, ((Af)?) diverges like ((Af)?) ~ L%, where ¢ is known as the roughness exponent
[8]. Explicitly calculating the integral using the infrared cutoff |¢;| > 27/L and the scaling
form with , one easily finds the scaling relation ¢ = 1 — /2. On our discrete lattice,
the integral in is, of course, replaced by the sum

(AN~ 1 (@) (33)
q

In contrast to G(q), the observable ((Af)?)) directly lends itself to a simple FSS approach.
Trying to take possible sub-leading FSS corrections into account, we employ the ad hoc FSS
ansatz

(Af)?) =6+ aL> (1 + B/L+/1%) (34)

In providing proper data for an accurate FSS analysis, it is important to use a cubic cutoff
geometry, since on a finite lattice the fraction of g-vectors inside and outside of a fixed spherical
cutoff generally does not scale with system size in a perfectly linear way. For the F'SS analysis, we
performed FMC simulations using the effective Hamiltonian with renormalized parameters
ka = 0.1, K5 = 0.1, in which a factor (kgT)~! has been absorbed, and investigated a collection
of systems with parameters

L=32n,n=1,2,...,20, A=7/8 (35)

The above choice of parameters, which was used in the production runs, was fixed during the
preparing test runs and was motivated by the heuristic principle to have an approximate balance
of the harmonic and anharmonic contributions to the total average energy changes recorded
during the simulation. For this choice, the largest considered system with (L,A) = (640, 40)
yields a value of ¢i/(27/L) ~ 33. In other words, we are able to evaluate a factor of ~ 13 times
more data describing the scaling region than those reported in [2I]. Moreover, the statistical
quality of these data is not affected by critical slowing down. And in fact, a standard least
squares fit of to our data works amazingly well (cf. figure . Numerically it results in the
estimate

n = 0.795(10) (36)
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Figure 2. Top: fit of FSS ansatz to simulation results for ((Af)?) obtained for the
collection of systems . Error bars are smaller than symbol size. Bottom: Relative deviations
of simulation data from the fit. Red lines are a guide to the eye. Gray lines indicate the relative
statistical errors of the simulation data in percent.

5.2. Correlation function G(q)

As we now show, it is much harder to extract a reliable result for n from the critical scaling
relation G(g) ~ k"*. In view of (11113), we actually should expect to see a crossover from
MF behavior G(q) ~ ¢~* for ¢ > qg to critical scaling for ¢ < gg. However, it is difficult to
judge the corresponding width of the crossover region. Thus, to reliably isolate n from a fit of
the G (q) data, an ansatz which allows for enough degrees of freedom to smoothly follow such
a crossover behavior is required. In [I3], Katsnelson considers a straightforward combination of

the type
4 n
5 KAq L (qa
G Hq) = T 37
@)=L |15 (% (37)
with a single free mixing parameter « (apart from the sought-after exponent 7) that implicitly
parameterizes the location of the crossover region in terms of a wave number gy = I:—/’\‘

introduced merely for dimensional reasons. Taking the logarithmic derivative of this expression,
such an ansatz yields an effective exponent

n
Net(q) = Y (38)
In [39], another type of crossover function is considered, which would translate into
n
nefi(q) = —— = (39)

(i)
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in our present setting. Compared to Katsnelson’s crossover function , this functional form
rigidly fixes the location of the crossover on the g-axis, since it imposes @ = 1. On the other
hand, if we regard the parameter o, which is fixed as ¢ = (4 — d)/2 by the spatial dimension d
in [39], as a free parameter in the present setting, it represents an additional degree of freedom
that also allows to tune the width of the crossover region. A comparison of and thus

suggests to introduce a more general crossover function with two free parameters o, o, as

_ U
UeH(Q) = ﬁ

If we reintegrate this formula and nail down the unknown integration constant by comparing its
asymptotics at ¢ — oo to the required MF behavior G~1(q) ~ ¢*, we obtain

4 oyn/o
= KA 1 (faa
G Hq) = i+ = (2 41
(@)=L e (2 (41)
which is the general fitting function with parameters 1, 0 and a we used to describe our data.
As a further refinement, we made an effort to correct for residual traces of the underlying
discretization (i.e. spurious higher powers of ¢ and cubic anisotropy effects implicitly caused by

the replacements ¢ — ¢ and ¢> — —A(q)). In polar coordinates ¢ — (g, ¢), such corrections
should be of the general form

(40)

lg| = |q|corr = q + (az + bs cos 4¢)q3 + (as + bs cos 4¢ + c5 cos 8<Z>)q5 + ... (42)

In fitting to the @(k) data this replacement was made, treating as, bs, as,bs and c¢5 as
additional fit parameters. However, this correction turned out to be of minor importance.
Another concern was that since the number of g-vectors of length ¢ in two dimensions
grows linearly with ¢, the data points in the scaling region might be underrepresented in a
straightforward least squares fit. Thus, fits were performed using a minimization procedure for
a sum of squared differences, weighted not only by the inverse variances of the data points, but
in addition also by ¢~ for values w = 0.0, 0.5 and 1.0. To calculate proper statistical error
bars for this hand-made weighted fit procedure, we employed a standard bootstrap approach
[40] using 100 bootstrap samples. However, it turned out that for all values of w the results were
statistically compatible with each other, the smallest error resulting for w = 0.

Figure [3] shows the typical results of such a fit obtained for a large system of linear size
L = 1800 and cutoff A = 7/15 (corresponding, as explained above, to a real space system
of linear size Ly = 27000) from a parallel version of our FMC code which will be described
elsewhere. At first glance, the fit looks quite acceptable, producing a value of n = 0.751 £ 0.017.
However, monitoring the relative deviations of individual data from the fit as compared to their
relative statistical errors, we notice that while most of the deviations remain in the range of the
statistical noise of the data, for the smallest g-vectors (1,0) - 27/L and (0,1) - 2w/L that we
can study on the cubic lattice the deviation exceed 10%. Following next in size are the vectors
(1,1)-27/L and (1,—1) - 27r/L, who also show a noticeable deviation, albeit much smaller and
opposite in its tendency. This behavior is in violent conflict with the supposed scaling behavior,
but our error bars are much too small to put the blame on statistical inaccuracies. Clearly, a
similar behavior will also be seen for any other reasonable choice of fitting function.

Let m,n denote two arbitrary integers. In the following we will denote the set of all wave
vectors (m,n) - 2r/L together with all vectors which are equivalent to these modulo cubic
symmetry as as (m,n). and refer to this set as a (cubic) symmetric direction. A separate
analysis of the deviations in various such symmetric directions (cf. figure [4)) reveals a certain
systematic behavior detectable on top of the statistical noise for vectors along (1,0). and (1,1).,
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Figure 3. Top: fit of crossover ansatz to simulation results for @(q) at linear system size
L = 1800 and cutoff A = 7/15. Error bars are smaller than symbol size. Bottom: Relative
deviations of simulation data from the fit. Red lines are a guide to the eye. Gray lines indicate
the relative statistical errors of the simulation data in percent.

125 z o T Figure 4. Separate comparison of relative
< 10 :z e p— deviations of simulation data for G(q) for
€ s 2 ('4'1)"'_ ] wave vectors g along various symmetric
g 5 B0 —{—‘Hﬂ’ﬂ"ﬁﬂs}#' ] directions as indicated. Lines are a guide
T s \ T e e e — to the eye. Gray lines indicate the relative
5 o \ ,-——W statistical errors of the simulation data in
3 s } /jp//{/r (6. orrors ] percent. Main plot: symmetric directions

. Y R pp— of type (1,0)¢, (1,1).. Inset: various other
55 5 45 -4 35 3 directions.

Ing

which decreases rapidly with the length of the corresponding wave vector, while the remaining
modes reveal no such behavior within statistical errors. Initially suspecting a bug in our code,
we introduced a number of modifications to our original program to investigate this phenomenon
further. To eliminate possible anisotropy effects originating form a cubic cutoff geometry, we
replaced the cubic cutoff [¢;| < A by a spherical one with |g| < A. We also performed additional
simulations using modified discretization schemes for 9(q) and A(q). Since we recall infrequent
reports on spurious oscillations arising from the use of sharp cutoffs in the literature on the
exact renormalization group [41], we even tried to replace our sharp cutoff by a soft one,
i.e. we introduced a modification of the dispersion function A(q), which rises smoothly near
the boundary of the cutoff and finally diverges beyond A. None of these modifications had
a noticeable effect on the observed special behavior of the (1,0). and (1,1), modes. However,
switching off anharmonicity by hand by putting K = 0 immediately eliminates the problem, and
so does the brute force modification R(Q, q) = 1. Finally, we chose to investigate the following
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toy model. Consider two wave vectors k, p, and let @ = k + p. Taking the angular average of
the continuum limit formula

— k2p2 kn)>?
Rl + p.k) = (6 p) xp)? = 0 00 (43)
yields
<R(k+p,k>>¢:k2+P2+(P+Q)’P+q, (14)

4

Plugging this into our algorithm, we again observe that any possible residual pathological
deviations of the (1,0). and (1,1). modes are dissolved in the statistical noise of the data.
Although these ad hoc replacements of R(Q,q) are, of course, physically unacceptable, they
nevertheless demonstrate that the behavior reported above is very unlikely caused by a mere
bug in our code, but seems to be related to the angle-dependent structure between k and p of
encoded in in combination with the finite size of the system. We currently believe that
it represents an, albeit completely unexpected and somewhat exotic, finite size effect resulting
from the interplay of the effective Hamiltonian with the topology of underlying set of
admissible wave vectors, which induces a kind of “surface effect in reciprocal space”. Indeed,
the subset of wave vectors of the Brillouin zone taking part in the simulation is bounded by
the cutoff A for large wave vectors. In a transition with critical wave vector q. = 0, the
modes with large g-vectors just below the cutoff A are the least critical and are not expected to
contribute significantly to the critical asymptotics. However, in the special care of the current
membrane problem, the Brillouin zone of a finite membrane represents a lattice, in which a hole
is pinched at its center ¢ = 0, inducing an additional “boundary” besides the one defined by A,
and the resulting cubic anisotropy is felt by the small wave vector modes in its neighborhood.
Intuitively, the effect of this hole at the center of the Brillouin zone may be viewed as a breaking
of anharmonic “reciprocal space bonds” that are mediated by the strongly direction-dependent
coupling . And in contrast to the large wave vector cutoff, modes with small ¢ do fluctuate
violently, while reveals that the couplings to all other modes are bounded by ¢ and thus
small. For the smallest admissible wave vectors (2w/L,0) and (0,27/L), we may thus expect
a certain deviatoric tendency of G(q) towards MF behavior (and thus “up”), which is indeed
identified in the data as the large positive deviation of G(q) at this wave vector in figure
For larger vectors, however, we find it difficult to predict even the qualitative behavior of the
resulting anisotropy.

125 7 (2320 —— ]
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5 Figure 5. Comparison of rel-
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Based on the hypothesis that what we see at small wave vectors is a finite size effect, we
decided to monitor the corresponding systematic trends observed with growing system size.
As figure [5| demonstrates, the pathological effects observed in the deviations of the @(k) data
from the collective trends found in a least squares fit of all modes are indeed qualitatively
completely similar for all considered system sizes, but for growing system size L are confined
to a successively shrinking region around g = 0. It is thus reasonable to expect that these
irregularities may indeed asymptotically disappear in the thermodynamic limit.

T
16 }
15 }
= ‘ i ‘
g -5-4-3-2-1012345:
12 b f .
i-. — -. — -. .0 i i i i i
-5 -475 -45 -4.25 -4 -3.75 -35 -3.25 -3 -2.75

Ing

Figure 6. Main plot: fit of crossover ansatz to simulation results for G(g) with all
contributions for g-vectors of type (1,0), and (1,1). omitted. Error bars are smaller than
symbol size. Right upper inset: relative deviations of simulation data from the fit. Red lines
are a guide to the eye. Gray lines indicate the relative statistical errors of the simulation data
in percent. Left lower inset: crossover function as determined by the fit.

As a finite size effect, the presence of the above described deviations should be properly
covered by our FSS ansatz . In addition, note from figure [4| that the tendencies observed in
the small wave vector deviations along (1,0). and (1, 1), are different, and therefore tend to at
least partially compensate themselves in the total sum . Thus, we are still confident that
the estimate (36|) is correct. y

To be able to squeeze out a reasonable numerical estimate from G(q) for comparison, we
decided to omit the most deviatoric (1,0). and (1,1). data in performing our fits. As figure [f]
shows, the quality of the resulting fit is excellent, producing the result

n = 0.761 £ 0.008 (45)
However, it is not straightforward to combine this estimate with our previous one. On the

one hand, the difficulties encountered in deriving may be the source of a systematic error
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superimposed on the observed statistical uncertainties. On the other hand, our guess for the
true crossover function 7eg(k) may still be less than perfect, introducing an additional systematic
error in the result. Last but not least, a small conventional finite size effect may still remain.
Reviewing these arguments we cannot help falling back on our previous FSS result , which
is not plagued by these difficulties.

6. Conclusion

In summary, we have presented a thorough discussion of our OFMC approach to calculating the
critical exponent n governing the long wavelength scaling of elastic deformations of crystalline
membranes in the flat phase. The great efficiency and excellent statistical accuracy of OFMC
is basically due to two reasons. On the one hand, by working with the Fourier amplitudes of
deformations as the basic MC variables and using an effective Hamiltonian at a wave vector
cutoff, we manage to project out all uninteresting microscopic details and to focus only on the
long wavelength degrees of freedom that determine the universal critical behavior. On the other
hand, we are using the collective MC move set , for which we manage to overcome critical
slowing down by tuning the MC acceptance rates separately for each g vector, which yields a
huge effective speedup of our simulations.

In future work, we plan to investigate the behavior of crystalline membranes close to a
substrate and/or under uniaxial tension. We also expect a similar approach to work for hexatic
membranes [12]. However, the OFMC approach is, of course, not limited to membranes. Further
applications to e.g. compressible spin systems and other long-range lattice spin models are under
way.

Note added in proof. A short account on the results presented above has now been
published in [42].
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