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A recently proposed method to obtain the surface free energy σ (R) of spherical droplets and bubbles
of fluids, using a thermodynamic analysis of two-phase coexistence in finite boxes at fixed total den-
sity, is reconsidered and extended. Building on a comprehensive review of the basic thermodynamic
theory, it is shown that from this analysis one can extract both the equimolar radius Re as well as
the radius Rs of the surface of tension. Hence the free energy barrier that needs to be overcome in
nucleation events where critical droplets and bubbles are formed can be reliably estimated for the
range of radii that is of physical interest. It is found that the conventional theory of nucleation, where
the interface tension of planar liquid–vapor interfaces is used to predict nucleation barriers, leads to
a significant overestimation, and this failure is particularly large for bubbles. Furthermore, different
routes to estimate the effective radius-dependent Tolman length δ(Rs) from simulations in the canon-
ical ensemble are discussed. Thus we obtain an instructive exemplification of the basic quantities
and relations of the thermodynamic theory of metastable droplets/bubbles using simulations. How-
ever, the simulation results for δ(Rs) employing a truncated Lennard–Jones system suffer to some
extent from unexplained finite size effects, while no such finite size effects are found in correspond-
ing density functional calculations. The numerical results are compatible with the expectation that
δ(Rs → ∞) is slightly negative and of the order of one tenth of a Lennard–Jones diameter, but much
larger systems need to be simulated to allow more precise estimates of δ(Rs → ∞). © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3685221]

I. INTRODUCTION

The purpose of the present paper is a thorough analysis
of the droplet model approach to determine the free energy
barrier for the formation of a (spherical) liquid droplet in a
(supersaturated) vapor. According to the picture of classical
(conventional) nucleation theory, this barrier results from the
competition between the bulk free energy gain proportional to
the created droplet volume and the accompanying free energy
loss due to the necessary formation and subsequent increase
of an interface (see, e.g., Refs. 1–5 for reviews). Unfortu-
nately, in an infinite grand-canonical system with short-range
interaction between particles, such a state is not well-defined
within rigorous thermodynamics.6, 7 A super-saturated vapor,
which one may produce by a sudden shift of the chemical po-
tential away from its equilibrium saturation value, does not
correspond to a stable state, but is metastable, i.e., only stable
on a certain time-scale.

On the other hand, in a canonical system of finite linear
dimension L, at fixed total density a condensed droplet sur-
rounded by (slightly) supersaturated vapor having a chemi-
cal potential difference to the equilibrium coexistence value
can exist as an equilibrium state. A detailed phenomeno-
logical analysis of the stability of such states was given in
Ref. 8. Note that in this ensemble, in which—besides the
temperature—L and ρ are fixed, the measured chemical po-
tential μ = μL(T, ρ) is the average of a fluctuating variable

a)Electronic mail: troestea@uni-mainz.de.

which explicitly depends on the linear dimension L in addi-
tion to the temperature T and the average density ρ. Particles
can be exchanged between the droplet and its environment
only inside the box, and so at fixed ρ the average μL is the
same inside and outside of such a droplet (which is geometri-
cally defined by some reasonable criterion), as was explicitly
tested using the Widom particle insertion method in Ref. 9.
This idea is at the heart of our approach to simulate such equi-
librium droplets in order to determine nucleation free energy
barriers.10 Our chosen method replaces the ill-defined grand-
canonical equilibrium scenario by the well defined equilib-
rium canonical scenario. In the finite box, the thermodynamic
potential per volume (called fL(T, ρ) here) is a well-defined
observable, and satisfies the relation(

∂fL(T , ρ)

∂ρ

)
T ,L

= μL(T , ρ). (1)

One could loosely say that for phase-separated states the be-
havior of the chemical potential μL(T, ρ) is reminiscent of a
distorted “van der Waals loop” when plotted against ρ (see
Figs. 2 and 3), even though such a statement, which refers
to a mean field picture, is certainly misleading to some ex-
tent in the present context (cf. Refs. 11 and 12). The precise
functional form of μL(T, ρ) depends crucially on the bound-
ary conditions chosen for the simulation, but generally one
observes a “back-bent” region confined between a local max-
imum μ

(max)
L (T ) and a local minimum μ

(min)
L (T ). In this re-

gion (with an average density between the densities of the
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coexisting bulk vapor and liquid phases), the densities of these
associated coexisting phases can be inferred from the equality
of their chemical potential with μL (Ref. 10).

Of course, by this change of ensemble, the original dif-
ficulty of the nucleation approach is not eliminated. For fixed
T and ρ, the deviations of the canonical chemical potential
μL(T, ρ) from its grand-canonical equilibrium counterpart
can be shown to vanish with some negative power of L for
growing system sizes.10 In other words, it is impossible to
take the thermodynamic limit at fixed μ �= μ∞(T, ρ). This
difficulty is due to the fact that the grand-canonical descrip-
tion of nuclei in a super-saturated bulk is thermodynamically
ill-defined, as there is no rigorous way to define a droplet in
any kind of equilibrium with its supersaturated vapor. Rather,
this situation may only be thought of as an instantaneous
snapshot taken during an—intrinsically kinetic—nucleation
process.13, 14 Moreover, this means that we have to be
prepared to live with (hopefully small) finite-size effects
that usually accompany a change of ensembles for finite
systems.

Following the standard description of Gibbs which we
will review in necessary detail below, the excess free energy
of a droplet corresponding to these densities can be deter-
mined for any choice of the dividing surface. In evaluating
our simulation results, it is now crucial to understand that
Gibbs’ theory does not prescribe any such choice. Thus, we
are left with the question which dividing surface to choose to
obtain results which are relevant for application to nucleation
theory. We will discuss these issues in detail below. At this
point it suffices to note the following. For a one-component
system, the choice which probably comes closest to the intu-
itive picture of a “droplet volume” is the so-called equimolar
surface, which will be defined later. From the point of view
of nucleation theory, however, this choice is not particularly
well-suited, as its radius Re is not directly related to the radius
of the critical nucleus R*, which is determined from the sta-
tionarity condition on the radius-dependent grand potential.
Due to lack of information on the precise analytical structure
of the curvature-dependent interface tension σ (R) entering
this equation, one frequently resorts to the capillarity approxi-
mation σ (R*) ≈ σ∞, which effectively amounts to completely
neglecting the unknown curvature dependence altogether.
Unfortunately, such errors enter exponentially in, e.g., the
standard formulas for calculating nucleation rates.1–5, 13, 14

To go beyond this crude assumption means to determine
σ (Rs) for the radius Rs corresponding to the surface of ten-
sion, which does coincide with R* even if σ = σ (R) is allowed
to depend on the curvature.

From the theoretical point of view, even though the first
seminal papers were published more than 60 years ago,15–17

the determination of the analytical structure of σ (R) continues
to be a highly controversial subject. As already indicated by
the above discussion, the central object to study is the differ-
ence δ(Rs) := Re − Rs, whose limit δ under extrapolation for
Rs → ∞ has become famous under the name Tolman length.
In particular, Tolman proposed the parametrization,17

σ (R) = σ∞
1 + 2δ/R

, (2)

However, this result is only obtained with the use of several
assumptions and approximations, and the actual value of δ for
a given system as well as the validity of this parametrization
as a whole has been debated continuously in the literature (see
Refs. 18 and 19 and references therein).

In contrast to analytic approaches, in our simulations we
do not rely on any particular analytical form of σ (R), as we
only need to determined Rs and σ (Rs) numerically to be able
to calculate the nucleation free energy barrier from the excess
of the grand potential (cf., e.g., Appendix 2 of Ref. 3). Never-
theless, once this is done, it is still interesting to extract infor-
mation on δ(Rs) from our simulations, thus helping to clarify
the validity of the ansatz (2). Before we discuss how to do
this, let us review the concepts of excess free energies, divid-
ing surfaces and the various assumptions in general and try
to disentangle the various approximations and assumptions
made.

The paper is organized as follows. We first summarize
our perspective of the phenomenological theory of the radius-
dependent surface tension and the Tolman length. Then we
present an application to the Lennard–Jones fluid using re-
sults from recent Monte Carlo simulations, and explain how
both Re, Rs and δ(Rs) can be extracted from these simulation
data. However, we find that the analysis is hampered by large
(and unexplained) finite size effects. We show that a density
functional approach treating interparticle attractions in a mean
field manner and enforcing radially symmetric density pro-
files does not suffer from this problem to such an extent. The
paper ends with a summary and discussion of our results.

II. REVIEW OF THE GIBBS DIVIDING SURFACE
APPROACH TO PHASE SEPARATION

The purpose of this section is to sketch the main ideas
of the classical Gibbs dividing surface approach to phase sep-
aration for inhomogeneous fluid/vapor systems. A few com-
ments are in order. First of all, we are aware that a number
of excellent references, e.g., Refs. 3 and 20–23 are available
on this subject. Nevertheless we feel that it may be useful to
provide a complementary accessible review, in which we put
particular emphasis on those aspects of the theory that our lat-
ter numerical analysis will make heavy use of. In this guided
tour through the above references, we also avoid all compli-
cations arising from any demand to cover the problem in full
generality. For instance, we will concentrate on the case of
a simple one-component fluid. Moreover, we follow standard
practice to ignore the caveat that a droplet of finite size coex-
isting in (unstable) equilibrium with surrounding metastable
vapor is not a well-defined problem of equilibrium statistical
mechanics.

Consider the intuitive idea of a “cluster” of a phase α

surrounded by a phase β in a simple fluid. On average, such
a cluster may appear to be spherical, but of course its shape
may fluctuate and its surface may be rather diffuse. At least
on molecular length scales, any attempt to define a cluster
volume or surface by a suitably chosen “cluster criterion”
thus clearly involves a certain amount of arbitrariness as to
which molecules to include/exclude. A corresponding arbi-
trariness also persists in the analysis of the continuous density
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profile ρ(x) obtained by averaging over individual molecular
configurations. On average the gradients of the density pro-
files ρ(x) of phase-separated configurations reflect the spatial
symmetry of the underlying phase-separated regions, but the
corresponding leveling surfaces of constant density provide a
whole family of reasonable candidates for defining an “inter-
face” between phases. Gibbs’ approach cuts this Gordian knot
by arbitrarily selecting a suitable so-called “dividing surface”
A from this family and subsequently exploits the requirement
of invariance of thermodynamic observables under a corre-
sponding change of the location of the dividing surface. The
price to pay is that many quantities of interest will pick up
a “superficial” dependence on the choice of position of the
dividing surface, which must be removed from physical ob-
servables by exploring the invariance of physical observables
under a so-called “notional” change of A, as we explain below.

Once a dividing surface has been chosen, this yields a
separation

V = Vα + Vβ, (3)

of the total volume. Well inside the bulk phases, the local
density ρ = ρ(x) should assume its coexistence equilibrium
values ρα , ρβ . Pretending these densities to be homogeneous
right up to the dividing surface, we define the associated num-
bers of particles in the bulk phases Nα := Vαρα , Nβ := Vβρβ

and correct for the error thus introduced in the total particle
number N by introducing an excess particle number Nx with
respect to the partitioning (3) as

N ≡ Nα + Nβ + Nx, (4)

such that

Nx =
∫

Vα

(ρ(x) − ρα)d3x +
∫

Vβ

(ρ(x) − ρβ)d3x. (5)

In a similar way, we may form excess contributions of other
extensive physical quantities. Of particular importance are
thermodynamic excess potentials like Ux, Sx, Fx, �x cor-
responding to the internal energy U and entropy S, the
Helmholtz free energy F, and the grand potential �. In the
case of a planar interface geometry, the Gibbs dividing surface
will of course be chosen to be oriented parallel to the inhomo-
geneous density region between the two coexisting phases.
For the planar geometry, we now notice that the excess �x

of the grand potential plays a distinct role among all excess
potentials, as it is easy to see that �x is invariant under a par-
allel shift of the position of the dividing surface. In fact, such
an independence is guaranteed for any quantity whose vol-
ume density coincides in both phases. The densities ωα , ωβ

of the grand potentials �α , �β are simply the negative bulk
pressures −pα , −pβ , and these must be equal in the case of a
planar interface for stability reasons. The interface tension σ

is thus well-defined by the relation

σ · A ≡ �x = � − �α − �β, (6)

for the case of a planar interface, i.e., σ = σ (T, μ) regardless
of the normal distance of the dividing surface to the inhomo-
geneous density region.

Thermodynamically, the identity of pressures pα = pβ for
a planar interface follows from the possibility that for such a

Rβ

R

Rα

β

α

ω

A

FIG. 1. Cone construction for the thermodynamic discussion of a spherical
interface.

geometry it is possible to scale both subvolumes Vα , Vβ and
their interface A by a common factor λ and make use of the
bulk extensivity properties and the accompanying Euler rela-
tions. It is crucial to realize that this is no longer possible in
the presence of a spherical interface, and thus the difference
in bulk pressures

�p := pα − pβ, (7)

at coexistence will be different from zero. To exploit the scal-
ing relations following from extensivity in the presence of a
spherical interface, a clever cone construction3, 20, 21, 24 is con-
sidered, see Fig. 1. Here, both phases α, β reside in segments
of a cone with opening solid angle ω, delimited by radii Rα ,
R (phase α) and R, Rβ (phase β). Thus the corresponding vol-
umes are Vα = ω(R3 − R3

α), Vβ = ω(R3
β − R3). Rα and Rβ

remain fixed, while the choice of the radius R of the Gibbs
dividing surface A = ωR2 is at our disposal. Trading the set
of parameters (ω, Rα , R, Rβ) for the physically more useful
quantities (Vα , Vβ , A, R), we write the differential of the total
grand potential as

d� = −SdT − pαdVα − pβdVβ

+ σdA + CdR − Ndμ, (8)

where pα = pα(T, μ), pα = pβ(T, μ). The whole point of the
cone construction is that it allows to exploit extensivity via
scaling of the solid angle ω. Varying ω → λω, the resulting
Euler relation allows to integrate Eq. (8) as

� = −pαVα − pβVβ + σA. (9)

However, any dependence of a physical quantity like � on R
introduced in this way is of course only superficial. To put
this into mathematical terms, let [d/dR] denote the so-called
superficial or notional derivative21 in which R is varied while
keeping the physical state of the system invariant. Using this
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notation, [d�/dR] ≡ 0 must vanish, which easily yields from
Eq. (8) the generalized Laplace equation

�p := pα − pβ = 2σ

R
+ C

A
(10)

and a comparison of the notional derivative of (9) with that of
the standard form � = �(T, Vα , Vβ , A, R, μ) in Eq. (8) allows
to identify

C = A

[
dσ

dR

]
. (11)

For the excess grand potential, we immediately deduce from
Eq. (9) that the identification �x = σA of the surface ten-
sion with the excess grand potential per unit area (Eq. (6))
holds without change. Explicitly comparing the correspond-
ing derivatives of �x computed from the right hand side of
Eq. (6) to those obtained using the integrated representation
(9), it is easy to see that �x is independent of Vα , Vβ , and in
addition σ is also independent of A, such that only the non-
trivial dependencies

dσ = −sxdT + cdR − �dμ (12)

remain, where we abbreviated

sx := Sx/A, c := C/A, � := Nx/A. (13)

In particular, the adsorption � will play a prominent role
in what follows. Superficially, all quantities appearing in
Eqs. (12) and (13) are thus functions of T, R, and μ. Physi-
cally, however, the parameters T, R, and μ are not indepen-
dent. In fact, for a simple fluid the Gibbs phase rule predicts
that only one intensive thermodynamic parameter can be in-
dependently varied at two-phase coexistence, but in presence
of a spherical interface, the usual derivation of this rule no
longer holds due to the breakdown of conventional exten-
sivity. In fact, since for various interface curvatures different
pressures pα �= pβ are possible for a whole range of temper-
atures T, we realize that phase coexistence involving curved
interfaces of undetermined curvature allows for two indepen-
dent parameters constructed from the above three. Usually, a
grand canonical system at constant volume is described by the
intensive parameters (T, μ), but since in the present context
we are interested in understanding the curvature dependence
of the interface tension, we intend to parametrize our system
by (T, R). Generally, such a reparametrization can be realized
by imposing a constraint of type γ (T, R = Rγ , μ) ≡ 0, which
amounts to fixing the dividing surface to a value R = Rγ . Con-
versely, we may regard this constraint as defining an implicit
function μ = μ(T, Rγ ). Thus, if we impose the constraint

0 ≡ c(T ,Rs, μ), (14)

which defines the so-called surface of tension with its associ-
ated radius Rs. Comparison with (12) yields(

∂σ

∂Rs

)
T

= −�

(
∂μ

∂Rs

)
T

. (15)

To compute the derivative (∂μ/∂Rs)T , one subtracts the
Gibbs–Duhem relations pertaining to both bulk phases α, β,
which yields at constant T,

0 = −d(�p)|T + �ρdμ|T , (16)

where �ρ = ρα − ρβ denote the number density differences
of the bulk phases. At constant T, a variation of �p and �μ

only depends on a variation of Rs; therefore, we obtain

�ρ

(
∂μ

∂Rs

)
T

=
(

∂�p

∂Rs

)
T

. (17)

The constraint (14) is equivalent to the validity of the classical
Laplace equation when used in Eq. (10),

�p(T ,Rs) = 2σ (T ,Rs)

Rs

. (18)

Thus, the remaining derivative on the right-hand side of
Eq. (17) can now be calculated in terms of σ (T, Rs) and
(∂σ (T, Rs)/∂Rs)T after taking an isothermal derivative of
Eq. (18). Inserting the result into Eq. (15), we obtain after
some straightforward manipulations,(

∂ ln σ

∂ ln Rs

)
T

= 2�s

Rs�ρ

(
1 + 2�s

Rs�ρ

)−1

, (19)

where �s ≡ �(T, Rs) denoted the adsorption at the surface of
tension. Using polar coordinates for our cone, �s is readily
computed as

�s =
∫ Rs

Rα

dr
r2

R2
s

(ρ(r) − ρα) +
∫ Rβ

Rs

dr
r2

R2
s

(ρ(r) − ρβ).

(20)

On the other hand, at the radius Re of the equimolar surface,
the adsorption

�(T ,Re, μ) ≡ 0 (21)

vanishes by definition, such that

0 =
∫ Re

Rα

dr
r2

R2
s

(ρ(r) − ρα) +
∫ Rβ

Re

dr
r2

R2
s

(ρ(r) − ρβ).

(22)

Subtraction of both equations results in

�s = �ρ

R2
s

∫ Re

Rs

d2r = �ρ

3R2
s

(
R3

e − R3
s

)
. (23)

In terms of parameters (T, Rs), of course Re = Re(T, Rs), and
in terms of the famous Tolman length

δ = δ(T ,Rs) := Re(T ,Rs) − Rs, (24)

we arrive at

�s

�ρ
= δ

[
1 + δ

Rs

+ 1

3

(
δ

Rs

)2
]

. (25)

Altogether, this yields the desired isothermal Rs-dependence
of the interface tension, encoded in the Gibbs–Tolman–
Koenig–Buff (GTKB) equation(

∂ ln σ

∂ ln Rs

)
T

=
2δ
Rs

[
1 + δ

Rs
+ 1

3

(
δ
Rs

)2]
1 + 2δ

Rs

[
1 + δ

Rs
+ 1

3

(
δ
Rs

)2] . (26)

In attempting to solve this equation, one should keep in mind
that the Tolman length δ is expected to be a nontrivial function
of Rs, in which case the GTKB equation is quite intractable.
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Following the natural ad hoc conjecture of Tolman,17 one usu-
ally makes the simple assumption that, at least for Rs large
enough, δ(T, Rs) ≈ δ∞(T) saturates, i.e., becomes approxi-
mately independent of Rs, and hopes for the best. Since δ∞(T)
is expected to be a quantity on the molecular scale, δ∞(T)/Rs

should then be small, such that it suffices to keep powers of
lowest order of this quantity on the right hand side of Eq. (26).
Furthermore, for large Rs, the interface tension itself should
also approach its limiting planar value σ∞(T). Under these
assumptions, Eq. (26) is readily integrated to give the well-
known Tolman formula

σs ≡ σ (T ,Rs) = σ∞(T )

1 + 2δ∞(T )/Rs

+ O((δ∞/Rs)
2) (27)

and, replacing Rs by Rs − δ∞(T), to a similar level of accuracy
also

σe ≡ σ (T ,Re) = σ∞(T )

1 + 2δ∞(T )/Re

+ O((δ∞/Re)2). (28)

In passing, we note that despite of contrary beliefs in the lit-
erature, the GTKB equation can then be solved analytically
without any approximation beyond assuming δ∞(T) to be in-
dependent of Rs by the technique of partial fraction decom-
position (see, e.g., Ref. 25 or Refs. 26–28). However, this is
more of a mathematical exercise, since our simulation results
below will show that the hypothesis that δ is independent of
Rs must be abandoned, at least in the range of radii Rs that are
physically relevant for real-world thermodynamics. In con-
trast, one can prove that the remarkable identity20(

∂ ln σe

∂ ln Re

)
T

=
(

∂ ln σs

∂ ln Rs

)
T

(29)

holds exactly, i.e., without any assumption on the
Rs-dependence of the Tolman length made. Also, from
Eqs. (12) and (21), we conclude that(

∂σe

∂Re

)
T

= c =
[

dσ

dR

]
R=Re

, (30)

i.e., if (and only if) Re is chosen as our radial parameter, the
notional and isothermal derivative of the interface tension co-
incide. These formulas might suggest that a parametrization
of the system by Re is just as convenient as by Rs, and of
course both quantities encode the same physical information.
However, Rs plays a distinguished role among all possible
choices of radii. The reasons for this are at least twofold. On
the one hand, eliminating �p between Eqs. (18) and (10) and
solving the resulting ordinary (notional) differential equation
for σ (T, R) yields the universal parametrization

σ (R)

σs

= 1 + 1

3

(
R − Rs

R

)2 (Rs + 2R)

Rs

. (31)

In other words, knowledge of Rs and σ s suffices to imme-
diately deduce σ for any other notional variation of R, and
in particular, Rs locates the minimum value σ s of σ (R) un-
der all such variations. On the other hand, an easy calculation
shows that the formation free energy barrier �� for a spheri-
cal droplet is

�� = 4πR2

3

(
σ − R

[
dσ

dR

])
. (32)

Of course, this quantity is independent of the particular choice
of R, but the simple relation

��(T ,Rs) = 4πR2
s

3
σ (T ,Rs), (33)

used in classical nucleation theory is only recovered if the
surface of tension is chosen as the dividing surface.3, 4

III. FREE-ENERGY-BASED NUMERICAL
APPROACHES TO DETERMINE σ AND δ

We now explain how to fit the above concepts in the
framework of a simulation study of droplets in finite box
volumes (see, e.g., Ref. 9 for details). Consider, say, a
one-component fluid in a cubic box of size V = Ld with
periodic boundary conditions. For a fixed temperature T well
below the critical point temperature Tc, we determine the
gross features of probability distribution PTVμ(N). This
quantity is rigorously definable, but in practice will only be
obtained numerically by, e.g., conducting a grand-canonical
Monte Carlo simulation. For a certain narrow range of
values μ, the single Gaussian-like shape of PTVμ(N) changes
to a double-peak structure which signals the two-phase
coexistence region. To minimize finite size corrections, one
can fine-tune the coexistence chemical potential to the value
μ = μ0(T) prescribed by the equal–weight rule29 applied to
these peaks (see the discussion below) using the well-known
histogram re-weighting machinery.30 Once μ0(T) has been
determined and fixed, the fine-structure of PT V μ0 (N ) at
μ = μ0(T) is resolved by flat histogram type sampling
methods, e.g., successive umbrella sampling.31 Taking its
logarithm yields, the Helmholtz free energy

F (T , V,N ) = F0(T , V ) + μ0(T )N + F̂ (T , V,N), (34)

where

F̂ (T , V,N ) = −kBT ln PT V μ0 (N ), (35)

and the function F0(T, V), which is related to the choice
of normalization of PT V μ0 (N ), will be unimportant for
what follows. From the double-peak shape of ln PT V μ0 (N ),
F̂ (T , V,N ) inherits the appearance of a double-well, whose
minima at Ng = Vρg, Nl = Vρ l, which correspond to the
equilibrium densities of the coexisting gas and liquid phases,
are separated by a free energy barrier of height ∝L2, which
displays a central plateau and fine additional features to the
left and the right of this plateau which are related to the
different geometries of phase-separated configurations. In all
cases known to the authors, the free energy values of both
minima of F̂ (T , V,N ) seem to roughly agree within the
accuracy of the simulations. While this is to be expected for
models, for which the coexisting phases are symmetry-related
(e.g., in Ising/lattice gas systems), this seems to be purely
coincidental in general. In fact, the widths of the correspond-
ing two quasi-Gaussian peaks in PT V μ0 (N ) are controlled by
1/Vρ2κT, and these numbers are not equal in general when
being evaluated for the phases α and β, respectively. Thus,
if we impose equal weight,29 the heights of the two peaks
should necessarily be different.
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Taking the derivative (∂/∂N)T, V of Eq. (34), we obtain the
canonical chemical potential μ(T, V, N). Could we invoke the
thermodynamic limit, then μ(T, V, N) would be classified as
an intensive variable, and standard scaling arguments would
allow to write its functional form as μ = μ(T, ρ). In view of
this notation, we choose to write μ = μL(T, ρ) to indicate a
possible finite size dependence of μ. A similar notation will
also be used below for other “quasi-intensive” variables, such
that, e.g., FL(T, V, N) ≡ VfL(T, ρ). Using this notation, we can
split

μL(T , ρ) = μ∞(T ) + μ̂L(T , ρ), (36)

where (in an abuse of language) the canonical “excess chem-
ical potential” μ̂L is

μ̂L(T , ρ) =
(

∂f̂L(T , ρ)

∂ρ

)
T

, (37)

and we have passed to volume densities. Globally, μ̂L(T , ρ)
appears to have the shape of a distorted “van der Waals
loop” (Fig. 3). As can be anticipated from the shape of F̂ ,
we find a constant central plateau of value zero, a sharp
maximum at some density ρmax smaller than the plateau
range but slightly larger than ρg, and a sharp minimum
at a density ρmin than the plateau range but somewhat
smaller than ρ l. Thus, for any prescribed “unsaturated” value
μ within the range μ∞(T ) + μ̂L(T , ρmin) < μ < μ∞(T )
+ μ̂L(T , ρmax), the equation μL(T, ρ) ≡ μ generally has (at
least) three roots ρα(T, μ) < ρ(T, μ) < ρβ(T, μ). By calling
on the identity of chemical potentials at phase coexistence,
we interpret these densities as the bulk densities of coexisting
phases. The values of the corresponding grand potential den-
sities corresponding to the states of the total system and of the
bulk states characterizing the coexisting subsystems α, β are

ω(T ,μ) = fL(T , ρ(T ,μ)) − μLρ(T ,μ), (38)

ωα(T ,μ) = fL(T , ρα(T ,μ)) − μLρα(T ,μ), (39)

ωβ(T ,μ) = fL(T , ρβ (T ,μ)) − μLρβ(T ,μ), (40)

where the use of the Legendre transform for our neces-
sarily finite systems is admittedly delicate. Inspection of
Figs. 2 and 3 suggests, however, that for the parts of the data
that correspond to pure phases finite size effects are not signif-
icant. Inserting μL = μ∞ + μ̂L and using Eq. (34), this reads

ω(T ,μ) = f∞(T ) + f̂L(T , ρ(T ,μ)) − μ̂Lρ(T ,μ), (41)

ωα(T ,μ) = f∞(T ) + f̂L(T , ρα(T ,μ)) − μ̂Lρα(T ,μ), (42)

ωβ(T ,μ) = f∞(T ) + f̂L(T , ρβ(T ,μ)) − μ̂Lρβ(T ,μ). (43)

Thus, after transforming to the free energy densities f̂

the homogeneous background part μ∞ drops out from the
calculations.

The interface tension corresponding to a partition V = Vα

+ Vβ with dividing surface A is

σL = F̂ x
L − μ̂LNx

A
, (44)
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FIG. 2. Dimensionless free energy densities βf̂ (T , ρ) for truncated
Lennard–Jones potential at temperature T = 0.78 · Tc for linear sizes
L = 13.5, 15.8, 18.0, 20.3, 22.5.

at common μ̂ = μ̂(T , ρ), with excess contributions

F̂ x
L = V f̂L(T , ρ(T , μ̂)) − VαfL(T , ρα(T , μ̂))

−VβfL(T , ρβ (T , μ̂)), (45)

Nx = Vρ(T , μ̂) − Vαρα(T , μ̂) − Vβρβ(T , μ̂). (46)

Formula (44) gives the interface tension at arbitrary R. Ac-
cording to the theory developed in Sec. II, it is therefore
straightforward to determine the radius Rs and the correspond-
ing interface tension σ (Rs) by numerically locating the min-
imum of this function. On the other hand, by plugging the
three roots ρα < ρ < ρβ into the lever rule

Vα

V
= ρ − ρβ

ρα − ρβ

,
Vβ

V
= ρα − ρ

ρα − ρβ

, (47)

it is also easy to calculate Re and evaluate σ (R) at this radius.
After completing these steps, we are in possession of the

radii Rs, Rs and the corresponding interface tensions σ s and
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FIG. 3. Dimensionless canonical chemical excess potentials βμ̂L(T , ρ) for
truncated Lennard–Jones potential at temperature T = 0.78 · Tc for linear
sizes L = 13.5, 15.8, 18.0, 20.3, 22.5.
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σ e. Thus, the Tolman length δ(T, Rs) can in principle imme-
diately be determined using its very definition (24). Note that
the present procedure does not make any use of the simple
Tolman formula (27), and neither any further approximations
nor any optimistic assumptions on the corresponding behavior
of δ as a function of Rs are needed.

Of course, one may also compare the results of such a
procedure to alternative numerical strategies. For instance,
from the data of simulations as outlined above, it is also
straightforward to calculate the adsorption �s at the surface
of tension. Thus, with the left hand side and the value of
Rs known, Eq. (25) represents a cubic equation for δ(T, Rs),
whose single real-valued solution is obtained from standard
formulas. Ultimately, one is mainly interested in the behav-
ior of δ(Rs) in the limit Rs → ∞, for which formula (25)
reduces to18

δ(T ,Rs) ≈ �s

�ρ
for δ(T ,Rs)/Rs � 1. (48)

Comparing the case of spherical liquid droplets in a vapor en-
vironment to the inverse one of spherical bubble cavities in a
liquid, we expect the respective adsorptions �s to approach a
common value �s(Rs = ∞) in the limit of a planar interface.
On the other hand, in this limit the relative density differences
�ρ should approach a common modulus but, of course, have
opposing sign from the droplet and bubble perspective, re-
spectively. The limiting Tolman lengths δ = δ(Rs = ∞) ob-
tained for droplets and bubbles should thus be identical up to
sign, which conforms to a naive replacement Rs → −Rs in
the simple Tolman formula (27). In passing, we note that this
immediately implies that for any system, in which the two co-
existing phases are related by symmetry (e.g., an Ising lattice
gas) the Tolman length δ∞(T) necessarily vanishes.32

In the literature,33 the numerical strategy implied by
Eqs. (25) and (48) has been termed the direct route to δ. On
the other hand, from Eq. (12), we instantly get

− 1

�ρ

(
∂σ

∂μ̂

)
T

= �s

�ρ
(49)

If we again regard the excess chemical potential μ̂, which
characterizes the over-saturation of the metastable phase, as
a function of Rs, i.e.,

μ = μcoex(T ) + μ̂(T ,Rs), (50)

then sending Rs → ∞ amounts to extrapolating μ̂ → 0.
While mathematically in full equivalence with other ap-
proaches, Koga et al.33 claim that this method to obtain δ∞(T),
which they term the adsorption route, has certain numeri-
cal advantages. Explicitly, δ∞(T) is then determined from the
relation

δ∞(T ) = − lim
μ̂→0

1

�ρ(μ̂)

(
∂σ (μ̂)

∂μ̂

)
T

, (51)

in which 1/�ρ(μ̂) generally depends only weakly on μ̂. The
derivative (∂σ (Rs)/∂μ̂(Rs))T must be evaluated by numerical
differentiation. In this context, we note that in Ref. 34, a linear
relation between δ(Rs) and μ̂ is observed in a seemingly phe-
nomenological way and is utilized for extrapolating δ(Rs) to
Rs → ∞.

In closing this section, we nevertheless have to emphasize
once more that trying to find the limiting value δ∞(T) will
turn out to be a rather academic problem since δ(T, Rs) will
be found to have saturated near such a limit only for values
of Rs and accompanying free energy barriers that are so large
that they are already irrelevant for any conceivable practical
purpose, e.g., nucleation theory.

IV. SIMULATIONS

We now move on to breath live into the above ideas
by using them to analyze previously obtained data for a 3d
Lennard–Jones system of linear sizes L = 13.5, 15.8, 18.0,
20.3, 22.5, truncated and shifted to zero at r = 2 · 21/6σ ,
where we have chosen Lennard–Jones units (see Ref. 35 for
details). As explained above, the coexistence chemical po-
tential μ0 was determined by the equal area rule, and sub-
sequently the dimensionless free energy densities βf̂ (T , ρ)
were determined at a temperature T = 0.78Tc (cf. Fig. 2)
from successive umbrella sampling simulations,31 where Tc

≈ 0.999 in the chosen units. Numerically differentiating
βf̂L(T , ρ), we then obtain μ̂L(T , ρ) (cf. Fig. 3).

Guided by the analysis of snapshots of typical configura-
tions appearing in the simulations and visual inspection of the
fine details of the main plot of Fig. 3, it is in principle possible
to roughly locate for each linear size L the density ranges
within which predominantly a—on average—spherical phase
separation pattern (i.e., a liquid droplet or a vapor bubble) ap-
pears. However, proceeding in this way we would have to live
with the accompanying uncertainties. In view of the delicate
numerical problems to identify the fine details of the interface
tension, in which any Tolman correction is buried, such an
approach is therefore suboptimal. Instead, in the subsequent
analysis we propose to consider provisional density regions
which are chosen according to the less restrictive condition
that they should only be chosen large enough to safely
enclose the ones predominantly inhabited by spherically
shaped clusters, postponing a strict determination of the
spherical density domains to later stages of the analysis. In
fact, if we impose the hypothesis of spherically shaped phase
separation patterns on the data, we can anticipate that some
observables computed from this analysis for different system
sizes L may show systematic deviations from a common
“master curve,” from which we will be able to reliably
identify the actual density regions for droplets and bubbles
a posteriori. In addition, it turns out that in this way it is
somewhat easier to observe certain systematic trends in the
data.

The provisional density regions are depicted in Fig. 4,
together with the sections of βμ̂L(T , ρ) corresponding to the
completely homogeneous vapor and liquid states.

Within these density ranges, one may fit both βf̂L(T , ρ)
and βμ̂L(T , ρ) to suitable smooth functions. For prescribed
total ρ, one then solves the equation βμ̂L(T , ρ) ≡ βμ̂L(T , ρi)
numerically for the coexistence densities ρ i, i = α, β (see
Fig. 5 for an illustration).

Evaluating the free energy density for such a triplet
(ρα , ρ, ρβ), we obtain a corresponding free energy density
triplet βf̂Ltot ≡ (βf̂L(T , ρ), βf̂Lα ≡ βf̂L(T , ρ), and βf̂Lβ
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FIG. 4. Indication of provisional (blue) density ranges considered in our general analysis (cf. Table I), which enclose the resulting approximate actual (red)
ones, for which predominantly roughly spherical liquid droplet (left plot) and vapor bubble (right plot) shapes are observed as typical microstates (cf. Table III
below).

≡ fL(T , ρβ)). Comparison to Eqs. (44) and (46) shows that
we now possess all the ingredients necessary to compute
the excess free energy density and number density, and thus
the interface tension. In what follows, we will frequently
suppress reference to the temperature T to lighten our
notation. Figure 6 shows the typical behavior of σ L(R; ρ)
as observed in numerically evaluating our simulation data.
Given the function σ L(R; ρ) is straightforward to determine
its minimum, such that we obtain the desired quantities Rs

and σ (L)
s ≡ σL(Rs ; ρ) for each given triple of densities (ρα , ρ,

ρβ ) (we choose to suppress also the L-dependence of Rs and
Rs to lighten our notation). In passing, we note that once Rs

and σ (L)
s have been determined, the correctness of the whole

procedure can conveniently be checked by comparing the
observed R-dependence of Eq. (44) with the universal form of
Eq. (31).

In addition to Rs, the equimolar radius Re can also
readily be computed using Eq. (47). In accordance with the
above condensed notation, we will denote the corresponding
surface tension at the equimolar surface as σ (L)

e ≡ σL(Re; ρ).
Information on the planar interface tension σ

(L)
∞ = σL(Rs

= ∞, ρ) is also available. One can measure the (average)
free energy difference �F̂L between the central plateau value
of the free energy and the value at one of the minima at ρα ,
ρβ , which gives rise to the finite size planar interface tension
estimator

σ (L)
∞ = �F̂L

2Ld−1
= L�f̂L/2. (52)

By extrapolation of these finite size values to the thermody-
namic limit, the planar interface tension σ∞ at T = 0.78 Tc
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FIG. 5. Illustration of the numerical procedure to determine coexistence density triplets (ρα , ρ, ρβ ) for L = 20.3. Full red lines indicate an example solution
(ρα , ρ, ρβ ) = (0.0366, 0.1126, 0.7241) at common chemical potential μ̂ = 0.18352 corresponding to a spherical droplet, while dotted blue lines refer to an
example solution (ρα , ρ, ρβ ) = (0.0319, 0.2059, 0.7161) at common chemical potential μ̂ = 0.0977 characterizing a cylindrical droplet.
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FIG. 6. βσ L(R; ρ) for L = 20.3 as computed for the spherical example den-
sity triplet of Fig. 5. R = Rs coincides with the location of the minimum
with value βσ

(L)
s , while the auxiliary lines denote the radius of the equimolar

surface R = Re as calculated from the lever rule (47) and the corresponding
equimolar surface tension βσ

(L)
e , respectively.

was estimated in Ref. 35 as βσ∞ ≈ 0.375. With (27) in mind,
this value serves as a natural normalization of σ (L)

s and σ (L)
e .

As Fig. 7 shows, the resulting values of σ (L)
s collected

from our simulation results at system sizes L = 13.5, 15.8,
18.0, 20.3, 22.5 appear to roughly collapse onto two separate
families of curves for liquid droplets and vapor bubbles,
respectively, which are slightly but systematically offset from
one another. The fact that these offsets decay systematically
between neighboring systems of increasing size indicates that
these offsets represent a finite size effect. A discussion of
possible origins of these finite size deviations, which may not
have been expected to be so large at a first order transitions is
postponed until the closing discussion of the paper. The data
show, of course, a pronounced Rs-dependence over the whole
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FIG. 7. Provisional results for the reduced spherical interface tension
σ

(L)
s /σ∞ for system sizes L = 13.5, 15.8, 18.0, 20.3, 22.5 using the provi-

sional density ranges of Table I. The upper branches of data contain parts
corresponding to configurations with a liquid droplet, while the lower ones
have parts which characterize vapor bubbles inside a liquid environment,
respectively.

TABLE I. Preliminary density ranges chosen by visual inspection of the
main plot of Fig. 3 to enclose the density ranges in which roughly spheri-
cal liquid droplet/vapor bubble shapes dominate in the typical microscopic
system configurations observed for the systems sizes L considered.

L Low density range High density range

13.5 0.079−0.158 0.5147−0.6221
15.8 0.071−0.157 0.5155−0.6304
18.0 0.068−0.156 0.5159−0.6353
20.3 0.065−0.156 0.5161−0.6417
22.5 0.061−0.156 0.5161−0.6470

range of observed radii. However, as anticipated, above,
due to the generous choice of density ranges summarized in
Table I, sections of the data this Rs-dependence is physically
irrelevant, as it merely represents the crossover from spherical
to cylindrically phase-separated as well as homogeneous
system configurations which we implicitly ignored in our
evaluation. Unfortunately, however, from these interface
tension data alone it is clearly very difficult to get an idea of
the exact locations of these crossover regions. Thus, let us
postpone this question for a moment and turn directly to the
data for δ(Rs) instead.

Figure 8 shows a plot of the corresponding data of δ(Rs)
= Re − Rs as calculated from our simulation and plotted
against 1/Rs, which is suitable for studying the behavior for
growing Rs. Looking at these curves, one notices the onset of
an only weakly L-independent linear segment in the both the
droplet as well as the bubble data for values around 0.15–0.25
in 1/Rs. The boundary values for these segments depend on
the system size L. We can determine them by fitting straight
lines to the data and locating the approximate boundary values
for which these fits begin to break down by visual inspection
(cf. Fig. 8). As each value of Rs is in one-to-one correspon-
dence with a total system density ρ, these results, which are
gathered in Table II, immediately translate into the density
ranges listed in Table III.
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FIG. 8. Grey lines show the behavior of ±δ(Rs) against 1/Rs obtained for
system sizes L = 13.5, 15.8, 18.0, 20.3, 22.5 based on the preliminary density
ranges of Table I. In colored thick lines, approximately linear segments of
these ±δ(Rs) curves are shown, with corresponding linear fits for the three
largest system sizes L = 18.0, 20.3, 22.5.
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TABLE II. Approximate R−1
s -values confining the linear segments ob-

served in δ(Rs).

L Droplet inverse radii Bubble inverse radii

13.5 0.295−0.365 0.280−0.340
15.8 0.250−0.295 0.230−0.290
18.0 0.200−0.260 0.195−0.245
20.3 0.170−0.260 0.175−0.245
22.5 0.155−0.230 0.150−0.220

Visually inspecting these density ranges, which are
indicated in Fig. 4, we realize that they are in excellent
correspondence with our expectations concerning the density
domains for which roughly spherical liquid droplet/vapor
bubble shapes are observed dominate in the typical micro-
scopic system configurations when taking snapshots of the
system configurations during the course of the simulation.

From the theorist’s point of view as well as from a DFT
perspective, the above observations may be appreciated. In
fact, there are theoretical arguments36, 37 predicting the Tol-
man length to have an asymptotic behavior of the form

δ(Rs) ∼ δ∞ + const./Rs, Rs → ∞, (53)

which also supports our interpretation. Below we will show
in addition that the observed linear behavior of the Tolman
length with respect to 1/Rs is also in excellent qualitative
agreement with results from density functional theory.

Having successfully determined the density and radial
ranges that are actually populated by spherical droplets and
bubbles, we return to the analysis of the interface tension data.
Within as well as outside of the spherical segments, the data
of Fig. 9 exhibit a pronounced Rs-dependence. In particular,
the droplet interface tension seem to suggest a certain “over-
shooting” of σ (L)

s to values larger than σ∞. In terms of the
simple Tolman formula (27), one would be tempted to pro-
pose a negative Tolman length, which could be obtained from
a corresponding fit.35 Nevertheless, in the light of the data
on δ(Rs) presented above, this conclusion resides on shaky
ground, as large enough radii Rs for which δ(Rs) is close to
an asymptotic value have not been reached remotely for the
data at hand. In any case, merely replacing σ (L)

s by σ∞, as it
is done in the capillarity approximation, can yield large errors
in derived quantities. In particular, this warning applies to the
determination of nucleation rates, in which the third power
of the interface tension enters exponentially. To illustrate the
magnitude of potential errors, Fig. 10 shows a comparison of
estimates of the pressure difference �pL inside and outside

TABLE III. Density ranges corresponding to the inverse radius ranges of
Table II.

L Droplet densities Bubble densities

13.5 0.102−0.119 0.580−0.595
15.8 0.094−0.111 0.588−0.610
18.0 0.086−0.119 0.589−0.619
20.3 0.074−0.122 0.589−0.634
22.5 0.071−0.117 0.594−0.639
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FIG. 9. Results for the reduced spherical interface tension σ
(L)
s /σ∞ for sys-

tem sizes L = 13.5, 15.8, 18.0, 20.3, 22.5 using the inverse radius ranges of
Table II. The upper branches of the data correspond to configurations with a
liquid droplet, while the lower ones refer to a spherical vapor bubbles inside
a liquid environment, respectively.

a liquid droplet computed from the Laplace equation as op-
posed to the simple capillarity approximation �p ≈ 2σ∞/R.

Summarizing our results so far, within the observed range
of radii and system sizes, δ(Rs) is strongly Rs dependent with
a behavior following Eq. (53), and from a purely mathemat-
ical point of view it is obvious that at radii Rs much larger
than those accessible in our simulations δ(Rs) finally satu-
rates and Tolman’s formula becomes correct. However, as we
now show, our simulations do cover the physically relevant
range of radii Rs. To show this, we investigate the free en-
ergy barrier (33) for the formation of droplets and bubbles,
respectively, which is a quantity of great interest in its own
right, since it plays a major role into practically all experi-
mental and theoretical approaches to nucleation problems. As
Fig. 11 demonstrates, at the chosen temperature the corre-
sponding barrier data ��(L)(Rs) = (4π/3)R2

s σ
(L)
s computed
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FIG. 10. Comparison of results for β�pL computed from the Laplace equa-
tion (lower data) as opposed to the simple capillarity approximation �p
≈ 2σ∞/R (upper data). Depending on the value of Rs, the error introduced
by the capillarity approximation falls in the range of 10%–30%.
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larity approximation are also indicated.

with the aid of Eq. (33) exceed some 65kBT for system sizes
beyond those considered here. Barriers in this range are cer-
tainly of practical interest, while significantly larger barriers
would not matter for observable nucleation rates at all.

Another important lesson that Fig. 11 teaches us is how
important it is to use the proper definition of surface tension
and droplet radius when one wishes to employ the classical
formula, Eq. (33), according to which the barrier is just 1/3 of
the total surface free energy of the droplet. In fact, the spher-
ically relevant part of a mere graph of σ (Re) plotted against
Re may appear to be deceivingly similar to that of σ s plotted
against Rs, since Eq. (6) illustrates that accidentally the larger
value σ e > σ s is also taken at a larger radius Re > Rs for our
present model. Nevertheless, the classical formula, Eq. (33),
only applies if R is taken to be the radius of surface of ten-
sion Rs and σ as the associate interface tension σ s, whereas
it would be rather inaccurate to use the equimolar radius and
associate surface free energy instead. This fact can be easily
illustrated with the data shown in Fig. 6 for a chosen chemical
potential difference μ̂ ≈ 0.183: the radius Rs = 5.583 and di-
mensionless surface tension βσ = 0.350 translate into a bar-
rier (in units of kBT) of 46.2, while the radius Re = 6.0435
and dimensionless surface tension βσ = 0.352 yield the sig-
nificantly larger value of about 54.3. In passing, we note that
in Ref. 35, results similar to Figs. 9 and 11 were presented for
the reduced interface tension at R = Re (cf. Fig. 6). However,
the latter result is not directly relevant for nucleation theory,
unlike the results shown in Fig. 9. With regard to the practi-
cal problem of determining nucleation barriers, we therefore
consider the present treatment much more satisfactory.

One may also wonder how large the error introduced by
a simple capillarity approximation σ (Rs) ≈ σ∞ in computing
the barrier �� actually is. Eliminating Rs in Eq. (33) in favor
of σ s by virtue of the Laplace equation (18), the barrier is seen
to depend cubically on σ s. Thus, replacing σ s ≈ σ∞ leads to
an overestimation of the barrier by the cubic factor (σ∞/σ s)3.
As can be anticipated from a glance at Fig. 9, for the data
at hand this overestimation, which is included in Fig. 11, is
absolutely dramatic.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Γ
s

1/Rs

droplets

bubbles

L=13.5
L=15.8
L=18.0
L=20.3
L=22.5
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segments of these �s curves are shown, with corresponding linear fits for the
three largest system sizes L = 18.0, 20.3, 22.5.

Returning to the analysis of δ(Rs), let us investigate our
data for the adsorption �s at the surface of tension. As Eq. (48)
indicates, the question whether δ vanishes or not boils down
to the question if �s does so, since by physical reasons �ρ is
generally expected to gently saturate at a finite and nonzero
value in the limit of infinitely large “droplets” or “bubbles”.
Looking at Fig. 12, one notices once more the onset of an only
weakly L-independent linear segment in the both the droplet
as well as the bubble data for values of 1/Rs which are practi-
cally identical to those already determined above (Fig. 12). In
addition, restricting the data to these ranges, our anticipation
concerning the gentle variation of �ρ(L)(Rs) in the limit Rs

→ ∞ is confirmed, and, as Fig. 13 shows, the extrapolation of
these data to Rs → ∞ is compatible with the finite size extrap-
olation of the (practically L-independent) density difference
�ρ(L) = ρ l − ρg formed by the two isolated zeros of μ̂(T , ρ),
which is estimated numerically as �ρ = limL→∞�ρ(L)

≈ 0.6796 for our present model. As may have been expected
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FIG. 13. Plot of ±�ρ obtained for system sizes L = 13.5, 15.8, 18.0, 20.3,
22.5 for spherical liquid droplets and bubbles, respectively (the dotted lines
are a guide to the eye).
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on general grounds, a plot of the solution of Eq. (25) in an at-
tempt to follow the “direct route to δ” gives results which are
indistinguishable from the ones shown in Fig. 8. We have also
tested the “adsorption route” to δ(Rs) outlined above. For the
presently available set of data a corresponding analysis did
not yield any significant improvement.

Summarizing, our results clearly demonstrate that within
the considered range of radii, δL(Rs) appears to depend
markedly on Rs, such that Tolman’s hypothesis δL(Rs)
≈ const. is ruled out. In particular, this implies that not only
the capillarity approximation but even the classical Tolman
formula (27) is unmasked as a mere mirage which may only
hold in the limit of very large droplet and bubble radii with
little physical interest. Still, we cannot resist the tempta-
tion to attempt an extrapolation of our findings to Rs → ∞,
although—based the accuracy and range of our presently
available data—this is obviously a bit presumptuous. Below,
we summarize our present attempts in Fig. 16. Of course, we
would like to extrapolate the values ±δ(L)(Rs = ∞) obtained
from the fits of the linear sections of the branches δ(L)(Rs)
for droplets and bubbles, respectively. Even though the two
smallest systems were excluded, the data shown in Fig. 8 fail
to have a common intersection point at R−1

s → 0. Neverthe-
less, the crossing points are slightly biased towards negative
values, such that one may speculate about a small negative
limiting Tolman length. We can do a similar thing for the quo-
tients of the values �(L)

s (Rs = ∞) obtained as fit parameters
from the fits of the linear sections of the adsorption �s (cf.
Fig. 12) and the approximate limiting density difference
±�ρ(Rs = ∞) ≈ ±0.682 (cf. Fig. 13) to L → ∞. As an
additional route for a possible extrapolation of δ(Rs) to Rs

→ ∞, we have investigated Re − Rs parametrized by the ex-
cess chemical potential μ̂ instead of Rs. As Fig. 14 shows,
upon this reparametrization we also find a linear relation be-
tween δ(μ̂) and μ̂ similar to what is observed by Julin et al. in
Ref. 34. In fact, from comparing our data with those of Fig. 3
in Ref. 34, we are tempted to interpret the slight increase of
slope in their data as an onset of the transition from configura-
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tained for system sizes L = 13.5, 15.8, 18.0, 20.3, 22.5 for spherical liquid
droplets and bubbles, respectively.

tions with a single spherical cluster to the homogeneous over-
saturated gas. However, with a cutoff of 5σ used in Ref. 34,
we are unable to directly verify this suspicion in a quantitative
way. Again fitting these linear sections with straight lines and
recording the intersections of these lines with the (μ̂ = 0)-
axis produces another set of finite size estimators for δ, whose
behavior turns out to be similar to the one obtained for the
quantity �s/�ρ in a numerical analysis (see below). From
the physical point of view, however, reparametrization of the
droplet/bubble formation barrier δ� by μ̂ has its merits, since
Rs is after all a purely theoretical quantity, whereas the excess
chemical potential μ̂ is more directly related to experiment.
From Fig. 3, we see that near its equilibrium coexistence
value μ̂ = 0, the excess chemical potential μ̂ is not plagued
by noticeable finite size effects, and Taylor-expanding the
supersaturation

S(p)(μ̂) := p(μ̂)

p(μ̂ = 0)
≈ 1 + ρ(μ̂ = 0)

p(μ̂ = 0)
μ̂, (54)

where μ̂ = 0 gives a straight line through 1 with experimen-
tally accessible slope ρ0/p0, where ρ0 and p0 denote the cor-
responding coexistence density and pressure, respectively. On
the other hand, the equation of state for many supersaturated
gases may be approximated by that of an ideal gas, and thus
S(p)(μ̂) ≈ S(ρ)(μ̂), where

S(ρ)(μ̂) := ρ(μ̂)/ρ(μ̂ = 0). (55)

Of course, for our data the relation μ̂ → S(ρ)(μ̂) turns out to
be slightly nonlinear. Nevertheless, since Eq. (55) is a con-
venient parametrization from the experimental point of view,
we chose to indicate some of these values in Fig. 15, which
shows the free energy barriers ��(L)(μ̂) as functions of μ̂.
The plot also reminds us once more of the vast overestima-
tion of a naive capillarity approximation.

In summary, the results of the various routes to access
the Tolman length for large droplet radii are shown in Fig. 16,
in which, however, we have excluded the data for L = 13.5
and L = 15.8, since these two smallest system sizes did not
allow to determine the various extrapolations with sufficient
precision. This plot may again hint at a small negative Tolman
length for droplets, which we would estimate as δ ≈ −0.13.
Although with the chosen conditions our present system is far
from criticality, it is worth mentioning that this result agrees
both in sign and order of magnitude with the mean field pre-
diction for δ at the critical point.32, 38 Furthermore, our result
is in nice agreement with other recent estimates19, 34, 35 and
in particular quite compatible with results from density func-
tional theory as will be shown below, but to be honest, the
quality and range of our present data may not be sufficient for
any conclusive answer.

In closing this section, we report that for cylindrical
phase separation geometry, a similar analysis was also at-
tempted. However, compared to the generic situation encoun-
tered in the numerical evaluation of the spherical case, the
slopes of μ̂(T , ρ) at the corresponding density regions are
much gentler (cf. Fig. 5). One may anticipate that this con-
siderably amplifies numerical errors in the evaluation. Fur-
thermore, in addition to finite size effects similar to those dis-
cussed above for spherical droplets (or bubbles, respectively),
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additional finite size effects are to be expected due to the fi-
nite length of the cylinders, which constrains capillary wave
type fluctuations in the direction parallel to the cylinder axis.
As cylindrical phase separation is only invoked by the use of
periodic boundary conditions, there is little interest in com-
puting further observables like �p(L) or ��(L) for this case,
and the corresponding results are not shown here. Similarly,
we have computed δ(L)(Rs) also for the cylindrical case by ap-
plying a 2d version of the above theory. Unfortunately, due to
their already mentioned modest accuracy, we can only report
that it is difficult to draw any reliable conclusions based on
the set of cylindrical data which is currently available to us.

FIG. 16. Attempted finite size extrapolation of the various estimators for the
Tolman length. The yellow area serves as a guide to the eye for visualizing a
reasonable bound for the asymptotic behavior of the data.

V. RESULTS FROM DENSITY FUNCTIONAL THEORY

In this section, we examine the bubble and droplet for-
mation using density functional theory (DFT) within a mean
field approximation for the attractive part of the interaction
potential. For simplicity, we will enforce radially symmetric
density profiles in a finite box of radius Lsph. Therefore, we
expect to see a sharp transition from an overcompressed va-
por to a spherical liquid bubble (or from a metastable liquid to
a spherical vapor bubble) but we will miss the transitions from
spherical to cylindrical and cylindrical to slab phases as seen
in Figs. 2 and 3. We are not specifically interested in these but
rather in a direct comparison with simulations of the density-
dependent chemical potential μ(ρ) in the appropriate domain
as well as in the question whether the functions δ(Rs; Lsph)
= Re − Rs (evaluated for the stable droplets in a finite box
and formally dependent on the box size Lsph) reduce to a sin-
gle function, corresponding to the case of the truly metastable
droplets in an infinite box.

For a finite box, we take as a constraint that the aver-
age density ρ̄ in the box is fixed to a certain value ρav. One
can implement this constraint into the minimization of the
free energy F through the definition of a grand potential-like
functional

�′[ρ] = F[ρ] − μ(ρav)
∫

Lsph

drρ(r) (56)

where the chemical potential μ = μ(ρav) serves as the
Lagrange multiplier needed to enforce the constraint. Here,∫
Lsph

dr . . . = 4π
∫ Lsph

0 r2dr . . .. Thus for the equilibrium
profile ρeq(r) the following holds:

δ�′

δρ(r)

∣∣∣∣
ρ(r)=ρav(r)

= δF
δρ(r)

∣∣∣∣
ρ(r)=ρav(r)

− μ(ρav) , (57)

∫
Lsph

drρ(r) = 4

3
πL3

sph ρav . (58)
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such that the total volume matches the volume L3 of a cubic simulation box.

The free energy functional used in our computations is spelled
out explicitly in our previous paper (see Ref. 35). Basically,
we have split F[ρ] into the sum of the exactly known ideal
gas part, a reference hard-sphere part and a mean field part for
the attractive part of the intermolecular potential based on a
Weeks–Chandler–Andersen (WCA) separation of the cut and
shifted Lennard–Jones potential used in our work. The ref-
erence hard-sphere functional was treated using fundamen-
tal measure theory, see Ref. 35 for all necessary definitions.
This functional gives reasonable agreement for the coexis-
tence densities well below the critical point and planar liquid–
vapor surface tensions which are about 25% too large (see
Tab. I in Ref. 35).

Since F[ρ] is nonlocal in the density, we need to specify
a condition for the density outside the finite, spherical box.
We choose the natural bulk condition ρ(r > Lsph) = ρ(Lsph).

In Fig. 17, the DFT results for the chemical excess poten-
tial μ(ρav) − μcoex are compared to the corresponding simula-
tion values for three radii of the spherical box. The radius Lsph

has been chosen such that 4π/3 L3
sph = L3, i.e., the system

volumes in DFT and simulations are equal. We note that the
DFT results have been rescaled with the ratio of the planar
surface tensions σ∞, sim/σ∞, DFT = 0.74. The reason behind
this bases on the observation that the excess free energy in
the phase-separated system is essentially proportional to the
surface free energy of the droplet/bubble, and the main differ-
ence between simulation and DFT for this excess free energy
stems from the difference in the planar surface tension values.
Since the chemical excess potential is the density derivative
of the excess free energy density, the same argument applies
to it as well. We see that upon that rescaling the “bubble” part
of the chemical excess potential agrees rather well with the
simulations, whereas for the “droplet” part the agreement is
only qualitative, presumably owing to the rather deficient de-
scription of the metastable vapor region.
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FIG. 18. DFT results for the radius-dependent Tolman length function δ(Rs;
Lsph) = Re − Rs for three box radii Lsph. Dashed lines show the corresponding
results for the metastable droplets and bubbles, obtained in Ref. 35 using a
much larger spherical box.

In Fig. 18, we observe that for droplets, δ(Rs; Lsph) eval-
uated for three different radii Lsph all lie on a master curve
which is given by the corresponding results for the metastable
droplets obtained in Ref. 35. For bubbles, deviations from
the master curve are visible for bubble radii � Lsph − 3.
These deviations are due to the stronger correlations in the liq-
uid. Nevertheless, it seems that DFT results are rather robust
against variation of the system size, in contrast to the simula-
tion results. At present, it is however not clear inasmuch this
behavior would change by using also a cubic box for DFT (or
a spherical box in the simulations). Therefore, attributing the
differences between simulation and DFT to the fluctuations
certainly missed by DFT is questionable.

In Fig. 19, we present a direct comparison of our es-
timates for the radius-dependent Tolman length δ(Rs; Lsph)
= Re − Rs as obtained from simulations and DFT calcula-
tions. It is remarkable that even though the DFT result obvi-
ously displays a markedly different slope as a function of 1/Rs
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FIG. 19. Comparison of results for the radius-dependent Tolman length δ(Rs;
Lsph) = Re − Rs as obtained from simulations and DFT calculations.
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as compared to the simulation data, the limiting behavior of
the two sets of data seems to be compatible, as was already
observed in our previous work.35

We have also compared the DFT results for the adsorp-
tion �s at the surface of tension to those of the simulation. The
qualitative findings are similar to the case of δ(Rs), namely
that overall the DFT values for �s are smaller than those ob-
served in simulation, and that the DFT droplet results for �s

all collapse on a single master curve. However, the bubble re-
sults show a strong spread due to finite size effects. Thus, here
the extrapolation of the DFT results to Rs → ∞ would also
be difficult, similar as in the simulation case.

VI. DISCUSSION

In the present work, for the vapor–liquid transition of flu-
ids we have presented a method to study the free energy of
droplets and bubbles as a function of their radius for the phys-
ically relevant range of nucleation barriers (10 ≤ β��* ≤ 65,
cf. Fig. 11). Our method does not need any atomic geometric
criterion to distinguish atoms (or molecules) that are inside
or outside the droplet (or bubble, respectively), but relies ex-
clusively on a phenomenological analysis of two-phase equi-
libria inside finite volumes. The thermodynamic functions of
such fluids (in practice, we study here only the Lennard–Jones
model with truncated and shifted interactions at a single tem-
perature of about 78% of the critical temperature) are obtained
very precisely with umbrella sampling methods for a broad
range of system volumes (cf. Figs. 2 and 3).

In our approach, we determine both the equimolar ra-
dius Re as well as the radius Rs of the surface of tension (see
Fig. 6). We are then able to obtain the radius-dependent in-
terface tension σ s(Rs) at the surface of tension (Fig. 9), the
Laplace pressure difference (Fig. 10), and the difference �ρ

of the bulk densities of both phases (Fig. 13). These data
clearly show that in the range of interest significant devia-
tions from the capillarity approximation σ (Rs) ≈ σ∞ occur;
the capillarity approximation always yields an overestimate
in the range of interest. For droplets, the deviations are in the
range from 5% to 20%; for bubbles, in the range from 10%
to 30%. At the same value of Rs, the deviation for bubbles
is always significantly larger than for droplets. If these trends
would persist up to Rs → ∞, the Tolman length clearly would
have to assume a nonzero limiting value. For the Rs-dependent
“effective” Tolman length δ(Rs) = Re − Rs for droplets, one
finds a positive but strongly Rs dependent result of the order of
0.5σ in the accessible range (Fig. 8), but taken together with
the information from the bubbles it is likely that for Rs → ∞
a slightly negative Tolman length (of the order of 0.1σ ) will
result. These numbers may nevertheless deviate from those
of other works, since, e.g., the values obtained for the surface
tension are known to strongly depend on the chosen Lennard–
Jones cutoff.39, 40

It is interesting to note that density functional theory, em-
ploying a standard mean field treatment of the interparticle
attractions, yields a much weaker dependence of σ s(Rs) and
δ(Rs) on Rs although the limiting behavior for Rs → ∞ agrees
with the simulation results.

The uncertainty in determining the limit δ∞ from our
data is in part due to the limiting system sizes that are avail-
able for the Lennard–Jones system in combination with a rea-
sonable computational effort. On the other hand, as the free
energy data show, the asymmetry in the free energy, which,
as we have mentioned above, is a necessary ingredient for
a nonzero limiting value δ∞ is not very pronounced for the
present model. A tailor-made system to observe a nonzero
limit of the Tolman length should thus be computationally as
cheap as possible, and should involve a pronounced asymme-
try between condensed and vapor phase, and indeed the corre-
sponding results on an Ising model with three-spin interaction
are much more conclusive.41

Unfortunately, we also observed considerable finite-size
effects in the analysis, which add to the difficulties of making
any conclusive statement about the limiting value of the
Tolman length. We must stress that the origin of these finite
size deviations, which were not anticipated in the context
of first order transitions, are currently not well understood.
For instance, as one can recognize from Fig. 9, the branches
σ (L)

s derived from the indicated different choices of L do not
perfectly collapse onto an L-independent “master curve.”
Instead, there occurs a slight but systematic mismatch. These
finite-size effects can have several reasons: On the one hand,
due to the finite linear dimension L of the box, a droplet
(or bubble, respectively) interacts with its “images” created
by the periodic boundary conditions via long range density
fluctuations. On the other hand, other observables, e.g., the
densities of the pure phases at the chosen chemical potential
are found to be only slightly L-dependent. In fact, when one
analyzes the states where a droplet (or bubble, respectively)
coexists with the corresponding surrounding bulk phase,
one has strong fluctuations of the observables of interest
(f̂L, μ̂L, Rs, Re, . . .). Some of these observables presumably
exhibit distributions that are not symmetric with respect to
their mean, and such an asymmetry is expected to lead to
systematic errors in the data such as shown in Figs. 9 and 12.
New simulation results for two-dimensional systems suggest
that these finite size effects are even more pronounced in two
than in three dimensions.42 More work to clarify these effects
is desirable.

We have investigated also the appearance of finite size
effects in our density functional calculations by using a spher-
ical box having a radius with size comparable to the linear
dimensions used in the simulations. Interestingly, for droplets
a perfect data collapse independent of the box size is found;
for bubbles, some systematic deviations occur, but only when
the bubble radius comes close to the box radius. Thus it would
be desirable to use such a spherical geometry also for the
simulations (with the obvious advantage that in such a setting
systematic effects due to transitions to cylindrical droplets
are not expected). Conversely, a DFT study reconsidering
the problem in a cubic instead of a spherical box would be
equally useful. These approaches must be left for future work,
however. Finally, we stress that the problems to carry out a re-
liable extrapolation to accurately estimate the Tolman length
do not at all prevent us from making reasonably accurate
predictions for nucleation barriers as function either of
the droplet (or bubble) radius (Fig. 11) or of the chemical
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potential difference (or supersaturation, respectively),
see Fig. 15. We have shown that the classical capillarity
approximation overestimates these barriers strongly.
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