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1. Introduction

In recent years, colloidal fluids confined in porous matsrigdve received considerable
attention. Experimental investigations on dozens of dbiffié systems evidence that under
such conditions a fluid can drastically change its struttthrarmodynamic, and dynamic
properties. For an overview over the field, we recommendrstaince I-6] and the ref-
erences therein. A particularly interesting challengerega in these works, which is yet
to be solved, is the dynamic behaviour of fluids that are sugmded in the presence of
disordered confinement: in some experimental setups thinearfluid has been shown
to bedeceleratedvith respect its bulk counterpart, in other systemseaceleratiorwas
observed, and in yet other systems glass transitions warnelftovanish[3-6]. Realising
that fluids moving in disordered materials play a pivotaérol a broad variety of applied
problems ranging from biology over chemistry to geology tewhnology, it seems essen-
tial to pinpoint the microscopic and collective mechanisesponsible for such seemingly
contradictory effects.

Unfortunately, a satisfactory theoretical treatment oiduin disordered confinement
has turned out to be difficult, with the major complicatiorirtgethe statistical nature
of the confinement. To date, one of the most successful apipesato the problem is
the so-called “quenched-annealed” (QA) formalism. In timisdel, the confinement is
represented by the particles of a one-component fluid frazeatace (“quenched”); in
this array of obstacles the particles of another fluid arewsdd to move (“annealed”).
Based on initial work by Madden and Glandt B], Given and Stell 9, 10] succeeded
in deriving a theoretical framework for QA systems whicheosf the distinct advantage
of using the well-established formalism of statistical pieg to account for both the fluid
and the confinement. Subsequent works used both theorefitsisions and computer
simulations to study in detail the statitl14] and thermodynamiclf4-19] properties of
QA systems.

Dynamic properties, however, remained beyond the cafiabitind capacities of both
theory and simulations for a long time. In the realm of theanyly recently a break-
through was achieved by Krakoviack: based on similar cotscapthose used by Given
and Stell, he succeeded in extending the mode-couplingythafothe glass transition
(MCT) [20, 21] to systems with quenched disord@2f24]. Probing the applicability of
his theory, Krakoviack considered a QA system consisting loérd-sphere fluid moving
in a quenched configuration of another hard-sphere fluiditisrparticular system, the
theory predicted a number of unusual dynamic features:|(k}like discontinuous glass
transitions at low obstacle densities, (2) continuousgiemnsitions at large obstacle den-
sities, (3) a localisation transition, and (4) a re-entsar@nario at large obstacle densities
and low fluid densities.

In recent computer simulation wor%-27] it was found that many of the observed
phenomena are captured qualitatively, in some cases engfs@ntitatively by the above
predictions. However, since MCT is essentially a mean-fieéary, it is inherently inca-
pable of making statements concerning thieroscopicorigin of the observed phenom-
ena. In the specific case of a monodisperse hard-sphere faithgiin an array of hard-
sphere obstacles, this means that MCT is ignorant aboutttidtfat the fluid particles
can be classified in two categories. The classification igda® the following consid-
eration: the fixed matrix of hard spheres partitions theesyistolume in spaces that are
accessible to the centre of a fluid particle (“voids”) andcgsathat are not. The observa-
tion fundamental to the present work is that there exist type$ of voids: disconnected
voids of finite size, and possibly a “percolating” void. THeabnnected voids are entirely
bounded by infinite potential walls so that a fluid particlagad within cannot escape;
such voids will be termed “traps” and fluid particles therag‘trapped” particles. In the
percolating void, on the other hand, particles can moveitefinfar from their initial lo-
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cations; such particles will be denoted as “free” partic{dlote that multiple percolating
voids can exist only in case of a finite system volume and periooundary conditions.)

The QA protocol was specifically devised to describe a homeges and isotropic
fluid. Therefore, the protocol requires that the usual tleelymamic average (which in a
bulk fluid suffices to guarantee isotropy and homogeneitydmplemented with another
average which is to be taken over different matrix realiseti[L0]. Moreover, in order to
guarantee that isotropy and homogeneity are fully takemaatount, it is imperative to
populate both the traps and the percolating void (if préseith fluid particles. However,
it is obvious that trapped and free particles differ in manyperties, especially dynamic
ones, which calls for a study in which these two classes dighes are distinguished.
Answering this call, in this work we introduce a method tontify trapped and free
particles. Since (as discussed shortly) this method isthaise geometric analysis of the
quenched matrix, it yields as a side product a wealth of médion about the structure
of the confining matrix. These findings will be presentedréfie core part of this work,
the description of separation procedure. Findings obtafrem applying the procedure
to the fluid component of QA systems have been reported inaatpwork 28].

Our approach to tackle this problem is based on a Delaunagnaieasition that maps
the void structure onto a discrete network of sites and bf2@32]. This allows not only
for the desired identification of traps and percolating @®jdbut to also investigate the
properties of the matrix by applying the methodology comiyposed to describe percola-
tion transitions. Since previous works on QA systems haealgencerned with dynamic
arrest p5-27], the simulations therein had to extend over long simutatimes and con-
sidered relatively small ensemble3([L0°) particles]. In such systems, voids extend over
the periodic boundaries; since this applies in particaldhé possibly-present percolating
void, particular care has to be taken when identifying thietaln this work we present
an efficient algorithm to solve this task. Finally, we applydume rastering technique
to determine the amount of accessible volume of each vaidilégi to that performed in
[32)); this allows to evaluate the void size distribution, amdyides a quasi-exact means
to determine—qgiven a specific obstacle density—the avefragéon of fluid particles
that reside in traps. Knowing the latter quantity is essg¢mthen combining observables
(such as dynamic correlation functions) pertaining to th@ped and the free particles
into observables of the full fluid.

The paper is organised as follows: In S@awve describe the geometric method em-
ployed to identify traps, the algorithm to identify perdirtg voids in finite-size systems,
and the rastering technique used to determine the volumesidas. In Sec3 we present
the results that these methods yielded for the confiningixatrQA systems. In Sed.
we discuss the implications of the results, indicating irtipalar their application to the
fluid component of a QA system, and close with concluding msa

2. Model and Methods

2.1. Generating the porous matrix

The positions of the obstacles in a quenched-annealedhsyste obtained by taking a
snapshot of an equilibrated one-component fluid at an arpiinstant of time. In the
specific case of monodisperse hard spheres, the statisiustoa one-component fluid is
entirely determined by its packing fractign, (for simplicity, the index “m” for “matrix”
used in P5, 27, 28] is retained). Therefore, in this case the parameter spacertsider

is one-dimensional. We used the Monte Carlo algorithm desdiin Appendix A of 7]

to obtain initial configurations of hard spheres at a préscti,,; subsequently an event-
driven molecular dynamics algorithr83, 34] was used to equilibrate those configurations
until the system’s mean-squared displacement excegidled?. Here,o is the diameter
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Figure 1. Two-dimensional schematic representation ofsteps of the Delaunay decomposition procedure. Detailed
explanation: see text. Dark (blue) solid discs: matrix ipts$. Dark (blue) thick dots: centres of matrix particl&pen
circles: Delaunay circles. Medium-shade (pink) filled kesc circles at the centres of which a fluid particle can beegia
Dark (grey) solid circles: circles a the centres of which &@ffarticle camot be placed. Medium-shade (pink) triangles:
accessible Delaunay triangles. Dark (grey) trianglescdassible Delaunay triangles. Light (orange) solid discsa at
which no fluid particle can be placed. Light thin (green) $ineonnecting Delaunay edges. Medium-shade thick (ree§:lin
non-connecting Delaunay edges. Black line segments:iglgbrs for the connecting part of a Delaunay edge.

of the patrticles, which serves as the length scale in thikweor the purpose of this
investigation, at every value @f,, we averaged all quantities of interest over at least 100
independent configurations, irrespectiveNyf, the number of particles in the obstacle
matrix. In all computations, periodic (toroidal) boundapnditions and the nearest-image
convention were employed.

2.2. Delaunay decomposition

For all matrix configurations obtained this way, we identifier each of the voids therein
whether it is disconnected (a “trap”) or percolates throtighentire system (taking into
accountthe periodic boundary conditions). As mentionddreethe notion of voids refers
to the spaces accessible to the centres of fluid particlesb@is of the separation method
is constituted by a Delaunay decomposition of the simutat@mume, in which the centres
of the obstacle particles serve as vertices. As has beennshpwastry and coworkers
[30], every Delaunay simplex belongs to no more than one voidcéegknowing the
“connectivity” (to be defined later) of the simplices, it isgsible to identify disconnected
and percolating voids. As has been proven by Kerst2$j, [this procedure maps the
collection of voids onto a discrete off-lattice network @es (which may or may not be
occupied) and bonds (which may or may not connect).

Fig. 1 shows a two-dimensional schematic drawing of the step<tiradtitute the De-
launay decomposition procedure. For simplicity, in théofeling description we will refer
to the particular case of two dimensions; the generalisdati@rbitrary dimensiod (and
specifically tod = 3) as well as a more detailed discussion will be given aftesa/aPanel
(a) of Fig. 1 depicts a matrix configuration of six hard-disc particleslametero that
form a void. In panel (b), the centres of these discs are septed by full dots; at those
dots a number of circles intersect. Each of these circlegh#gha non-trivial property:
exactly three of the particle centres lie on its perimetad @oneinside. There exists a
uniqueset of such “Delaunay circles”, which follows from Theorem8 and 5.11 in35]
in conjunction with the fact that the collection of verticesthe dual Voronoi diagram
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is unique B5]. Panel (c) shows circles that are concentric to the Debagirales but re-
duced in diameter so that theyuchthe matrix particles. Consider now the fluid particles
that move in the array of obstacles: suppose their diameter like that of the matrix
particles. For any obstacle-touching circle in panel (&3 theans that if its diameter is
less thang, then no particle can be placed at the centre of this ciralehSircles are
marked in dark (grey) colour in panel (c). Consider now tlaatdepicted in panel (d),
triangles are formed by the matrix particles on the perimeteesach Delaunay circle;
these are called “Delaunay triangles”. If in panel (c) a flpaiticle cannot be placed at
the centre of some Delaunay circle, then the entire areaeotdresponding Delaunay
triangle is inaccessible; hence, those triangles needenobbsidered in the further steps
of the decomposition. In panel (e), superimposed to draidihgn light (orange) colour
the area is shown in which no fluid particle of diametecan be placed. This way, it is
verified that no particle can reside in the Delaunay triasigiieat were previously identi-
fied inaccessible. Moreover, the void can now be identifisdally, and it is clear that it
is a trap since “there is no path to the outside”. This intgitonclusion can be formalised
by considering for each edge of a Delaunay triangle justwioeparticles that define it: if
they permit to place a fluid particle at the centre of such ddDeay edge”, then the two
neighbouring triangles amonnectedThe result of applying this criterion is depicted in
panel (f), where the matrix particles are now blanked oue Deelaunay edges are high-
lighted according to their connectivity: the medium-sh#uek (red) edges canot be
passed by a fluid particle, whereas the light thin (greengeggrmit passing (indicated
by the black bars). As can be seen in the leftmost Delaunaggie of panel (e), it is
possible that a fluid particle cannot be placed within a giaralthough it can be placed
at the centre of the corresponding Delaunay circle. Thiggahse the centre of the circle
can resideutsidethe triangle. Nevertheless, some edge of such a Delaumagte can
formally be connecting; since the other edges cannot beedatise connectivity of the
Delaunay triangles correctly reflects connectivity of tloéé even in this case.

In thed-dimensional case, and hence the aase3 relevant to this work, the following
generalisations apply. (i) The notion of Delaunay circkesaplaced by that of Delaunay
d-spheres (spheres of dimensid); they are defined by the centres df 1) fluid par-
ticles! that reside on their surface, and fulfil the requirement traparticle centres are
located within them. (ii) The Delaunajrspheres define Delaundysimplices; ind = 3
they have tetrahedron topology, i.e., four vertices, sigesj and four triangular faces.
For this reason, we will refer to the Delaunay 3-simplicexdaunay tetrahedra”; note,
however, that the triangle faces of a Delaunay simplex aneigdly not equilateral. (iii)
The Delaunayd-simplices are bounded by surface elements of dimensienl() which
are defined byd particles. Ind = 3 they consist of triangles which we will refer to as
“Delaunay faces”. Such a surface element is connectingtietentre of its circumhy-
persphere [defined by tlteparticles] a fluid particle can be placed.

2.3. Percolation algorithm

After completion of the decomposition procedure, for ea@laDnay tetrahedron it is
known whether its circumsphere is accessible to the cehadloid particle, and for each
Delaunay face it is known whether it is connecting or not.Ha hetwork picture that
was previously alluded td2pP)], the tetrahedra correspond to sites and the faces represen
bonds: both of these can be occupied or not, but bonds canceysbetween occupied
sites. In the next step, these building blocks are assentif@donnected groups, each of
which describes a void. In case that a group consists of & finimber of members, this

INote that there may exist spheres with more thawn- 1) particle centres on their surface and none inside; in tris ea
single sphere defines more than one Delauvaymplex. Since there is no unique way to define the Deladhsiynplices
inside suctd-spheres, the resulting Delaunay diagram is called “fatistt”.
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Figure 2. Two-dimensional schematic representation ofraptete Delaunay decomposition of a random arrangement
of eight obstacles with periodic boundary conditions. D@nlkie) solid discs: matrix particles. Medium-shade thid]
lines: non-connecting Delaunay edges (seeHjid-ight thin (green) lines: connecting edges. Thin blaoks: box borders,
separating periodic images. Dark (grey) areas: non-aibte$3elaunay triangles. Light (yellow) area: initial tnigle in the
procedure to determine the connectivity of the triangleugso Medium-shade (pink) triangle: first triangle for whigh
periodic image is encountered in that procedure.

is a relatively minor challenge; if on the other hand the grepans across the simulation
box (considering the periodic boundary conditions), ititahto avoid a multiple counting
of tetrahedron images while still being able to identify wier the void is percolating. For
this task, we devised a novel algorithm, as described indh@/ing.

To allow for a visual description (see later), we will agaimmoy the terminology
of two dimensions; the generalisation of the procedure teetldimensions is straight-
forward. The starting point is marked by choosing at randd@elaunay triangle of which
it is not yet known to which group of triangles it belongs.sEiwe add this triangle to
a list and store its location (for instance the centre of hreasponding Delaunay circle)
as the origin of the triangle group. We then consider eaclaDgly triangle that borders
the current triangle via a connecting edge: First, we comjiatlocation by adding the
difference vector between the bordering and the curreangie to the position of the
latter. Then, we check if the bordering triangle is alreadye®ement of the list: If not,
we add it to the list and store its location. If it is alreadyntaned in the list then the
stored location of the triangle is retrieved and comparet thie location just computed;
if those locations do not match then the newly-found triarigla periodic image of the
one already contained in the list, and the triangle groumddfby the lismustconstitute
a percolating void. After checking all of the bordering triges, the current triangle is
marked “processed”; then, the unprocessed triangle wihalvest identifier is retrieved
from the list, and the same procedure is repeated. Thisrestéte until the list contains
solely processed triangles; the list then contains alhgji@s in the triangle group.

To clarify this procedure, consider the schematic drawimgas in Fig.2. Suppose at
the beginning the triangl& is the only element of the list and its location has been dtore
Then, in the first loopT, andTg are added to the list. In the second lobp T3, and T
are considered, but sindg is encountered at the same location as previously saved, it i
discarded and only; andT; are added to the list. In the third loop, only is added; in
the fourth loop this is done fofs andTg. In the fifth loop, finally,Tg is encountered, but
at a location differing from the encounter in the first loonefefore, the group must be
percolating. In order to find the remaining triangles, thecgdure is then continued &,
which yields no additional entries to the list, and theizat

After applying the same dimensionality generalisationisedere, the three dimensional
procedure is described by the following pseudo-code:
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Figure 3. Two-dimensional schematic drawing of the rasgetechnique applied to each Delaunay simplex to determine
the volume therein that is accessible to the centre of a flaitigle. Each square represents one rastering grain. Darg)(
solid discs: matrix particles. Light (orange) solid disnsen-accessible area. Black empty triangle: a Delaunaydiga
Empty squares: grains that are not located within the tl@rigark (grey) squares: inaccessible grains that belorigeo
triangle. Medium-shade (pink) squares: accessible gthatselong to the triangle.

while list contains unprocessed tetrahedoa
choose unprocessed tetrahedron with lowest id
for all tetrahedra bordering a connecting fale
compute location
if not on listthen
save location, add to list
elseif computed# stored locatiorihen
mark group “percolating”
end if
end for
mark current tetrahedron “processed”
end while

2.4. Volumerastering technique

The procedure described so far is sufficient to distinguistavben traps and the perco-
lating void(s). However, in order to analyse in more detaddtatisticsof the voids, it is
useful to also determine their volumes, i.e., the amounpate accessible to the centre
of a fluid particle in each void. This allows for instance t@cte out void size distributions,
which may then be used to interpret the dynamic behavioua fiarticles moving in
the obstacle array. Also, knowing the void volumes rendepsssible to precisely eval-
uate the average fraction of trapped particles in QA systéfoseover, consider that the
voids undergo a percolation transitiod6] when varying the matrix densit§,,: above a
certaing;, no percolating void exists. In an infinitely-large systehis transition is sharp;
however, in systems of finite size more care has to be takeslitdly identify ¢,,. In this
context knowledge about the void volumes is useful, altinatiglso possible to conduct
investigations on this phenomenon based solely on the Daladecompositiordl].
Sastry and coworker8()] developed a complete, but rather complicated formalism to
exactly determine the size of a void formed by hard spheiaseSor the purpose of this
work we were merely interested in a reliable estimate of thid gizes, we opted for a
simpler approach like done for instance 82]. In this approach, the volume is rastered
by considering a large number of cube-shaped “grains” gedin a simple cubic lattice:
first, for each Delaunay tetrahedron the grain centres docaiside the tetrahedron are
determined; subsequently, for each of the correspondmiggit is checked whether the
centre of a fluid particle can access the grain centre. Thesadude volume inside a single
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Figure 4. Selected quantities that describe the confinestrerdture without using information on the notion of trapsla
the percolating void. (a) Probabili;..,1eq (@m ) that a fluid particle can be placed inside the circumsphegelélaunay
tetrahedron. (b) Probabilit®,..(¢n) that a Delaunay face is connecting. (c) ProbabMty,in (¢, ) that a grain centre is
accessible to a fluid particle. Definition of the analytic dtion PSS, (@, ): see text. Curves for different matrix particle

grain
numbersN,, are virtually indistinguishable. Error bars (barely visjorepresent one standard deviation of the mean over
different system realisations. Vertical dashed line: platton thresholdp, as determined from Fig.

tetrahedron is then the number of accessible grains tineegallume of a grain, the latter
being simply the lattice spacing to the third power. In camalion with the information
about the connectivity of the Delaunay tetrahedra, thengraliows to evaluate the volume
of each void. The rastering procedure is visualised in Bjgwhere accessible grains
located inside the tetrahedron are indicated by squaretedhia a medium (pink) tone,
whereas grains that belong to the tetrahedron but are nessibte are represented by
dark (grey) squares. The lattice depicted in Rdeatures merely six grains per particle
diameter; this resolution is considerably coarser tharotieeused in our investigations.
For computing most observables we employed a lattice sgafii5 grains per particle
diameter; for determining the unweighted void size disiiitn (Fig.7 in Sec.3.2) we
increased this figure to as much as 100. Unless stated ofemviSec3, uncertainties
associated with the finite size of the grains are much lessfigignt than statistical errors.

3. Results

3.1. Statistics of the Delaunay decomposition

Before we turn to a detailed discussion of the voids, we ifigate some of the statistical
features of the underlying Delaunay decomposition and ticessible volume. For this,
no information about the notion of traps and percolatinglsas required. In Figd, three
gquantities are presented that vary with the matrix packiagtion, @,, and can easily
be extracted from the procedure discussed in 8ePanel (a) Show®,ci,hed (@), the
probability that a fluid particle can be placed inside thewinsphere of a Delaunay tetra-
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hedron; panel (b) depicts the related quanBty.(¢@. ), the probability that a Delaunay
face is connecting. Panel (c) preseRis.i,(¢.), the probability that a grain centre is
accessible to a fluid particle. The latter quantity can ofrsewe calculated without the
Delaunay decomposition; it merely represents the oveodlinae accessible to the centre
of a fluid particle. By combining Eq. 2 ir3[/] and Eq. 2.7 in 88, it is also possible to
obtain the analytic expression

PCS

grain((pm) = exp{ - 1)

8(pm9(p§l+3(p§}
(1—@n)®

for the accessible volume; the derivation is based on thedan-Starling (CS) equa-
tion of state B9] and the excess chemical potential. (Note that the indeaifijrwas
retained for notational simplicity only; the derivationd]. (1) is ignorant of the concept
of grains.) For comparisorf,’g(igin is included in Fig.4(c) as a light (grey) background
curve.

Anticipating that thep,, range considered in Fig.includesg; , the density at which the
percolation transition of the voids takes place (indicdigdhe dashed vertical line), the
most striking feature of these three probabilities is tt@himg even remotely indicates
this fact. On the contrary, none of the quantities considlelecreases by more than a
factor of two over the entire range ¢f,, and all do so in a strictly monotonic fashion.
Therefore, as has been discovered bef@fe 37], a simple analysis oP,..i, cannot be
capable of predicting the correct dynamics of a QA mixtureif is close tog;, and
neither could an analysis based on the other two probasilifis expected® cirhed, Prace:
andP,..;, are found to be independent of the size of the system; tharthe large number
of averaged elements, the curves for different system sizegirtually indistinguishable
and errors are minute. The accuracy of the data is even madergvfrom panel (c),
where they are superposedﬁggm, which can be regarded to be essentially exact. As
an interesting side finding (not shown in a plot), we deteadithe that average number
of Delaunay tetrahedra per matrix partictgs:;neq (@), monotonically decreases from
Neetrhed (0.235) = 6.5844-0.003 tONetrheqd (0.270) = 6.547+0.003. Note that in a periodic
system the number of Delaunay faces is exactly twice thdtefdtrahedra.

3.2. Statisticsof the voids

Figure5 gives a visual impression of a Delaunay decomposition (d)odithe subsequent
volume rastering (b) for a sample system contaiigg= 714 matrix particles; the latter
number is typical for the simulations performed &5 27, 28]. In both panels, elements
coded in darker (red) shade constitute traps, whereas pteritelighter (green) shade
belong to the percolating void. In panel (a), only Delaureyethedra were considered for
which a fluid particle can be placed at the centre of the cigphmare. Panel (b) indicates
that for the major part of the accessible volume, the ragjeteéchnique yields results
of adequate accuracy; merely for very small voids the methdigrs from inaccuracies.
However, since the latter voids comprise only a minute foacdf the accessible volume,
those inaccuracies should have negligible impact wherysimgj the dynamics of an an-
nealed fluid in conjunction with information about the voizes. From panel (b), it is also
evident that the structure of the accessible volume is fiigbhuniform, with the voids
covering a large range in size and shape.

The most straight-forward quantity to extract from the péation analysis described
in Sec.2.3is of course the probabilitf,....1(@.) that a system contains a percolating
void; naturally it provides one means to estimgfg, the percolation threshold of the
void spaceP,..,1 depends not only upon the matrix packing fractign but also on the
size of the system, here quantified by the number of matritighes N,,,. Since periodic
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(@)

Figure 5. Three-dimensional representation of the objexdslting from a Delaunay decomposition and a subsequent
rastering (cf. Sec2) applied to a sample matrix consisting of 714 particles.kdaed): objects pertaining to traps. Light
(green): objects that constitute the percolating voidD@unay tetrahedra for which a fluid particle can be pla¢edea
circumsphere centre. (b) Grains for which a fluid particle be placed at the centre.

N,, = 64000 —~ |
16000 —~ |
4000 =
1000

1.0~ — ‘

0.0, [ RN I \

0.27

0.24 0.25 0.26
Pm
Figure 6. Probabilities indicating the presence of a pat@mi transition which can be extracted from the percafatio

analysis and the rastering procedure. (a) Probabilityalsgstem at a giveq,, contains a percolating void. (b) Probability
that a given grain belongs to a trap. Error bars and vertiashed line: see Figd.

boundary conditions were employed, with respect to an tefiyrlarge systene.col in
small systems is enhanced abage while below @} the reverse is true. From Fi,
panel (a), this smearing-out in small systems is immedjiaeident; such finite-size ef-
fects are well-known from order parameters in first- and sdearder phase transitions
where they are associated with cutting off a divergent lersgiale (see, e.9.4(]). As
expectedP,...o1 approaches a step function g is increased. An estimation af;, is
provided by the interval over whidB,..., changes from 1 to O for the largest system con-
sidered. This procedure yields2d8 < @} < 0.254, an interval that indeed encloses the
more precise value that we will later extract from Rgindicated by the vertical dashed
line in Fig.6. Note that it is a coincidence that tRg...; curves for differeniN,, intersect
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Figure 7. Probability that a given void extends over an aibés volumeV. Curves represent matrix packing fractions
@n below, close to, and above the percolation transition. @y&ighted probability, folN,, = 100 matrix particles. (b)
Probability weighted with/, for N,,, = 64000. Error bars: see Fig.

at points distributed over a narrogy, range; this is unrelated to scaling considerations
and does not serve as a more precise estin3géle [

Panel (b) of Fig6 shows another interesting quantity, namely,, (¢ ), the fraction
of accessible volume that is located in traps (as opposebletgéercolating void). As
expectedP,.,;, approaches unity ag, is increased towardg; ; finite-size effects similar
to those inP,.co1 Can be observed. However, unlike the lattf,, does not converge
to a step function abl,, is increased since belog,, traps are encountered in systems of
any size. Consequently, distilling the interval contagngy, from P,..,, is somewhat less
precise than extracting it from,...1. The significance oP,.,, lies in a different reason:
recall that for setting up QA systems the patrticles of thelfa@dmponent are inserted into
the matrix at random position8%, 27, 28]. Considering this, it is clear th&,.,, describes
precisely the average fraction of fluid particles that acated in a trap. Therefor®,;.,
at a certaing,, can be used to obtain some observable of the full fluid by pmifay (at
the samap,,) an appropriately-weighted average of the same obserpabiaining to the
trapped and to the free particles.

As mentioned previously, voids of vastly differing size atthpe are present in a QA
system. The latter finding is not unexpected and can be digahth a more succinct
fashion by computing, at fixegh,, the probability distribution of void volumes. First,
recognise that given a system at a spedjfijcand N,,, the volume of the percolating
void(s) is known as

AN
Viercol (n) = [1 = Prrap(¢hn)] Porain(@in) | g Nl 2)
Since this means that,....1(¢n) can be calculated solely from quantities already dis-
cussed, in the following we will consider only traps.

In Fig. 7(a) we present the probability(V) that a given void contains an accessible
volumeV; panel (b) shows the same quantity weighted WitHn the case oP(V), the
probability distribution exhibits interesting featuregeo a large range of void volumes
(note the logarithmic volume scale in Fig), including in particular very small values
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Figure 8. Average volume of the voids formed by the matripeteling of the matrix packing fractiop,,. (a) Volume-
weighted averagéV),; (¢m). (b) Number-weighted averag¥), .., (¢n). The vertical dashed line represents the best
estimate of the percolation threshaj], based on position of the peak in panel (a). Error bars: seetFiyote that panel
(a) of this figure corresponds to panel (b) in Figand vice versa].

of V. In order to trace out the distribution to such small volupvess considered systems
containing merely 100 patrticles. This necessity arose fitwarfact that a small grain vol-
ume entails a large number of grains, and from the fact thapeer memory is limited.
However, considering th&(V) does not show interesting features abbvve 10, the
choice ofN,, = 100 is sufficient. Using a grain edge lendgith.;, = 0.01 (i.e., 100 grains
per particle diameter), the systems comprisied;, ~ 60C° grains; this allowed reliable
calculations of void volumes for voids exceedNg- 10-°. Below this value o¥, data
in Fig. 7(a) suffers from finite-size effects; this concerns in gatar the upward “kink”
in this range oW.

The most interesting feature of Fig(a) is the fact that there is, almost like in Fig.
little (if any) indication of a percolation transition. Maly a small shoulder fog,, = 0.251
andV ~ 10! hints at this fact. Instead, the location of the distribatpeak continuously
shifts to larger values ag,, is increased. Conversely, the volume-weighted distritouti
P(V)V, presented in panel (b), shows clear evidence of a peronlatnsition. Since by
definition this quantifier emphasises large volumes, difiees therein are enhanced: For
@, = 0.251, the distribution assumes values di®for volumes as large as~ 103; for
the other two densitieB(V)V falls off to lower values already at volumes smaller by two
orders of magnitude. Considering thR{/)V is essentially zero beyond= 10* and that
for N, = 64000 andp,, = 0.251 the total system volume s 50° ~ 10°, uncertainties in
P(V)V arise solely from statistics and not from the finite size efslystem.

Finally, we turn to the quantity that—disregarding finiiges scaling techniques—
allows for the most accurat@§] determination of the percolation transition: the second
moment of the void volume distribution

Nvoids
~Y

/(; PVIVZV D Viz.

N

- / ooP(V)v av V°idsv
0 2,V

<\/>V01(%1) (3)
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Here,V; denotes the volume of voidin a configuration at a given value ¢f,; note
that, like in P(V), the percolating void is not included iN,.q4s. In an infinitely-large
system(V),.1( phim) diverges atp?; a convergence to this behaviour can immediately be
seen from Fig8(a). The divergence can easily be rationalised: First, idenghat just
above the percolation threshold very large voids existctviaire “almost” percolating in
the sense that only in few locations a connection is disdiptethe matrix. Just below
the percolation transition voids are also large, since waithncreasing number of obsta-
cles substantial accessible volumes are disconnectediipercolating void. Realising,
then, thatV) ., is the volume-weighted version of the average void size

vol

1 Nyoids

Vo (B = [[ POV AV 5y @

it is clear that a large void will have large weight. Since ia excluded the percolating
void, for @, # @, no infinite weight can be present {¥),,,. Therefore, the latter can
diverge only atp? . For completeness, in panel (b) of FRywe also showV)_..; note,
however, that the maximum of this quantity doex correspond tap; . Focusing, finally,

on the position of the peak V), the best estimate emanating from the present work

for the percolation threshold in QA systems of equal haresghisy; ~ 0.251(2+ 2).

4. Discussion and Conclusions

The primary objective of this work was to introduce a geoinatrethod that reliably
identifies which of the voids formed by an arbitrary matrixmoimobile hard spheres are
of finite volume and which are infinitely large. In Sé&twe presented an efficient algo-
rithm based on a Delaunay decompaosition that suits thisiregent specifically in the
presence of periodic boundary conditions. Given a set ofilmblard-sphere particles that
occupy random locations within such a matrix, this methajges a clear-cut means to
determine which among the mobile particles are “trappextdted in a void of finite size)
and which are “free” (located in an infinitely large void)idtworth noting that although
trapped particles may not be relevant or not even realisedperimental setups, it is of
paramount importance to explicitly include these parsieiden testing theoretical frame-
works that explicitly require their presence—only this veaych theories, which represent
the state of the art to describe fluids in disordered confiméhoan be scrutinised and
subsequently improved.

The method introduced in Se2 also enables to evaluate various statistical properties
of the voids formed by such matrices, which is interestind aseful on its own right.
In Sec.3 of this work, we chose to focus on matrices quenched from aililecated
hard-sphere fluid since such matrices are the key featurédafy@tems. The result that
stands out from this study is the highly accurate deternanaif ¢ , the packing fraction
at which the percolation transition of the voids takes plreQA systems of identical
hard spheres. This percolation transition is intimatelyracted to the dynamic arrest of
the fluid particles that move in the host matrix, and its dateation using the method
introduced in this work provides an independent verifigatid previous investigations
such as Refs.2pb, 27, 28, 41]. We determined the percolation transition to take place at
@; =0.2512, which is in excellent agreement with the findings ofetheve works, which
unanimously found the fluid to exhibit subdiffusive behawifor ¢,, ~ 0.25 (or slightly
above this value) and in all cases this fact was attributeith¢ounderlying percolation
transition of the voids. There is an apparent slight disaigient with the investigation by
Sung and Yethiraj on the “random matrix” protoc@8l], for which they found the per-
colation transition to take place at, ~ 0.24. However, considering that in this protocol
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the matrix particles are serially inserted into the simalavolume and remain fixed at
their insertion locations (se8]] for details), this discrepancy can probably be attributed
to the fact that random matrices of this kind do not representigurations of an equili-
brated fluid. This would be in agreement with the finding of $hene authors, as well as
other authors6, 32, 42], that @}, depends sensitively on details of the matrix preparation
protocol.

There are several possible applications and routes ofraetioerging from the ge-
ometric method presented in this contribution. One of thestnstraight-forward uses,
namely performing a separation in trapped and free pastide QA systems of equal
hard spheres, has been been investigated by the authoreintarment publicationg].
The results in that contribution have turned out to provitteresting insights into the
capabilities of MCT to describe the dynamics of dense QAeasyst Furthermore, it is
possible to apply our method without modification to systémwhich the fluid parti-
cles have a radius different from that of the matrix parsiclend even to systems with
polydisperse fluid particles. In the latter case, the onlyeahis an increasingly involved
analysis since the void connectivity has to be evaluatedraggly for each fluid particle,
which unfortunately also renders the interpretation datié. Our method isot directly
suited for application to matrices consisting of polydisgeparticles; however, it can
be extended to this case in a straight-forward facon by ntakise of the solutions to
the so-called “Apollonius’ Problem” (i.e., the problem tadia circle that touches three
other circles) and its higher-dimensional generalisationappropriate places of the al-
gorithm. In this context it is due to mention a different ab geometrically analysing
polydisperse matrices which has been explored by Sastrg@ndrkers, who extended
the Voronoi construction (which is dual to the Delaunay deposition) to this case3[).
Another natural application of our method would be to aralystrices constituted by
particles that interact through a continuously varying paitential. If the hard-sphere
potential represents a low-temperature limit of such ama@k(which is the case, e.g.,
for the Lennard-Jones potential) the decomposition metioadd be used to perform a
separation in regions of low and high energy, as has beeniddefs. B7, 43).

Finally, also the quantities presented in Sgand related descriptors of the void struc-
ture offer promising routes to directly compute the dynano€ a confined fluid from
structural information of the host matrix. For instanceyatted simulational methods
can be devised, like the Monte Carlo simulations on Voromtivorks performed ind1],
and theoretical approaches can be worked out which invavemly the total accessible
volume [37] but also the distributions of the void volumes and of thedvoonnectivities.
This way, hopefully, answers can be provided to the dire rieemnproved theories and
extended simulations on fluids in disordered confinementus finally rationalise the
existing plethora of experimental information in this field
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