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Model systems in which fluid particles move in a disordered matrix of immobile obstacles have been found
to be a reasonable representation of a colloidal fluid confined in a disordered porous medium. For systems
consisting of hard-sphere particles, the obstacle matrix partitions the space available to the fluid particles into
voids of finite volume (“traps”) and a percolating void that extends over the entire volume. This geometric
distinction plays a key role for the dynamic properties of the confined fluid: while its particles are not
able to escape from traps, in the percolating void they can propagate infinitely far. We present a geometric
method, based on a Delaunay decomposition, to identify the two different kinds of voids in an arbitrary
matrix configuration of finite size under periodic boundary conditions. We subsequently apply a rastering
technique, which enables us to statistically characterisethe structure of the voids. We investigate the specific
case of a quenched-annealed mixture of identical hard spheres, for which, among others, we accurately
determine the matrix packing fraction at which the percolation transition of the voids takes place.
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1. Introduction

In recent years, colloidal fluids confined in porous materials have received considerable
attention. Experimental investigations on dozens of different systems evidence that under
such conditions a fluid can drastically change its structural, thermodynamic, and dynamic
properties. For an overview over the field, we recommend for instance [1–6] and the ref-
erences therein. A particularly interesting challenge reported in these works, which is yet
to be solved, is the dynamic behaviour of fluids that are supercooled in the presence of
disordered confinement: in some experimental setups the confined fluid has been shown
to bedeceleratedwith respect its bulk counterpart, in other systems anaccelerationwas
observed, and in yet other systems glass transitions were found tovanish[3–6]. Realising
that fluids moving in disordered materials play a pivotal role in a broad variety of applied
problems ranging from biology over chemistry to geology andtechnology, it seems essen-
tial to pinpoint the microscopic and collective mechanismsresponsible for such seemingly
contradictory effects.

Unfortunately, a satisfactory theoretical treatment of fluids in disordered confinement
has turned out to be difficult, with the major complication being the statistical nature
of the confinement. To date, one of the most successful approaches to the problem is
the so-called “quenched-annealed” (QA) formalism. In thismodel, the confinement is
represented by the particles of a one-component fluid frozenin place (“quenched”); in
this array of obstacles the particles of another fluid are allowed to move (“annealed”).
Based on initial work by Madden and Glandt [7, 8], Given and Stell [9, 10] succeeded
in deriving a theoretical framework for QA systems which offers the distinct advantage
of using the well-established formalism of statistical physics to account for both the fluid
and the confinement. Subsequent works used both theoreticalextensions and computer
simulations to study in detail the static [11–14] and thermodynamic [14–19] properties of
QA systems.

Dynamic properties, however, remained beyond the capabilities and capacities of both
theory and simulations for a long time. In the realm of theory, only recently a break-
through was achieved by Krakoviack: based on similar concepts as those used by Given
and Stell, he succeeded in extending the mode-coupling theory of the glass transition
(MCT) [20, 21] to systems with quenched disorder [22–24]. Probing the applicability of
his theory, Krakoviack considered a QA system consisting ofa hard-sphere fluid moving
in a quenched configuration of another hard-sphere fluid. Forthis particular system, the
theory predicted a number of unusual dynamic features: (1) bulk-like discontinuous glass
transitions at low obstacle densities, (2) continuous glass transitions at large obstacle den-
sities, (3) a localisation transition, and (4) a re-entrantscenario at large obstacle densities
and low fluid densities.

In recent computer simulation work [25–27] it was found that many of the observed
phenomena are captured qualitatively, in some cases even semi-quantitatively by the above
predictions. However, since MCT is essentially a mean-fieldtheory, it is inherently inca-
pable of making statements concerning themicroscopicorigin of the observed phenom-
ena. In the specific case of a monodisperse hard-sphere fluid moving in an array of hard-
sphere obstacles, this means that MCT is ignorant about the fact that the fluid particles
can be classified in two categories. The classification is based on the following consid-
eration: the fixed matrix of hard spheres partitions the system volume in spaces that are
accessible to the centre of a fluid particle (“voids”) and spaces that are not. The observa-
tion fundamental to the present work is that there exist two types of voids: disconnected
voids of finite size, and possibly a “percolating” void. The disconnected voids are entirely
bounded by infinite potential walls so that a fluid particle placed within cannot escape;
such voids will be termed “traps” and fluid particles thereinas “trapped” particles. In the
percolating void, on the other hand, particles can move infinitely far from their initial lo-
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cations; such particles will be denoted as “free” particles. (Note that multiple percolating
voids can exist only in case of a finite system volume and periodic boundary conditions.)

The QA protocol was specifically devised to describe a homogeneous and isotropic
fluid. Therefore, the protocol requires that the usual thermodynamic average (which in a
bulk fluid suffices to guarantee isotropy and homogeneity) becomplemented with another
average which is to be taken over different matrix realisations [10]. Moreover, in order to
guarantee that isotropy and homogeneity are fully taken into account, it is imperative to
populate both the traps and the percolating void (if present) with fluid particles. However,
it is obvious that trapped and free particles differ in many properties, especially dynamic
ones, which calls for a study in which these two classes of particles are distinguished.
Answering this call, in this work we introduce a method to identify trapped and free
particles. Since (as discussed shortly) this method is based on a geometric analysis of the
quenched matrix, it yields as a side product a wealth of information about the structure
of the confining matrix. These findings will be presented after the core part of this work,
the description of separation procedure. Findings obtained from applying the procedure
to the fluid component of QA systems have been reported in a separate work [28].

Our approach to tackle this problem is based on a Delaunay decomposition that maps
the void structure onto a discrete network of sites and bonds[29–32]. This allows not only
for the desired identification of traps and percolating void(s), but to also investigate the
properties of the matrix by applying the methodology commonly used to describe percola-
tion transitions. Since previous works on QA systems have been concerned with dynamic
arrest [25–27], the simulations therein had to extend over long simulation times and con-
sidered relatively small ensembles [O(103) particles]. In such systems, voids extend over
the periodic boundaries; since this applies in particular to the possibly-present percolating
void, particular care has to be taken when identifying the latter. In this work we present
an efficient algorithm to solve this task. Finally, we apply avolume rastering technique
to determine the amount of accessible volume of each void (similar to that performed in
[32]); this allows to evaluate the void size distribution, and provides a quasi-exact means
to determine—given a specific obstacle density—the averagefraction of fluid particles
that reside in traps. Knowing the latter quantity is essential when combining observables
(such as dynamic correlation functions) pertaining to the trapped and the free particles
into observables of the full fluid.

The paper is organised as follows: In Sec.2 we describe the geometric method em-
ployed to identify traps, the algorithm to identify percolating voids in finite-size systems,
and the rastering technique used to determine the volumes ofvoids. In Sec.3 we present
the results that these methods yielded for the confining matrix of QA systems. In Sec.4
we discuss the implications of the results, indicating in particular their application to the
fluid component of a QA system, and close with concluding remarks.

2. Model and Methods

2.1. Generating the porous matrix

The positions of the obstacles in a quenched-annealed system are obtained by taking a
snapshot of an equilibrated one-component fluid at an arbitrary instant of time. In the
specific case of monodisperse hard spheres, the statistics of such a one-component fluid is
entirely determined by its packing fractionφm (for simplicity, the index “m” for “matrix”
used in [25, 27, 28] is retained). Therefore, in this case the parameter space to consider
is one-dimensional. We used the Monte Carlo algorithm described in Appendix A of [27]
to obtain initial configurations of hard spheres at a prescribedφm; subsequently an event-
driven molecular dynamics algorithm [33, 34] was used to equilibrate those configurations
until the system’s mean-squared displacement exceeded(10σ)2. Here,σ is the diameter
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Figure 1. Two-dimensional schematic representation of thesteps of the Delaunay decomposition procedure. Detailed
explanation: see text. Dark (blue) solid discs: matrix particles. Dark (blue) thick dots: centres of matrix particles.Open
circles: Delaunay circles. Medium-shade (pink) filled circles: circles at the centres of which a fluid particle can be placed.
Dark (grey) solid circles: circles a the centres of which a fluid particle cannot be placed. Medium-shade (pink) triangles:
accessible Delaunay triangles. Dark (grey) triangles: inaccessible Delaunay triangles. Light (orange) solid discs:area at
which no fluid particle can be placed. Light thin (green) lines: connecting Delaunay edges. Medium-shade thick (red) lines:
non-connecting Delaunay edges. Black line segments: highlighters for the connecting part of a Delaunay edge.

of the particles, which serves as the length scale in this work. For the purpose of this
investigation, at every value ofφm we averaged all quantities of interest over at least 100
independent configurations, irrespective ofNm, the number of particles in the obstacle
matrix. In all computations, periodic (toroidal) boundaryconditions and the nearest-image
convention were employed.

2.2. Delaunay decomposition

For all matrix configurations obtained this way, we identified for each of the voids therein
whether it is disconnected (a “trap”) or percolates throughthe entire system (taking into
account the periodic boundary conditions). As mentioned before, the notion of voids refers
to the spaces accessible to the centres of fluid particles. The basis of the separation method
is constituted by a Delaunay decomposition of the simulation volume, in which the centres
of the obstacle particles serve as vertices. As has been shown by Sastry and coworkers
[30], every Delaunay simplex belongs to no more than one void; hence, knowing the
“connectivity” (to be defined later) of the simplices, it is possible to identify disconnected
and percolating voids. As has been proven by Kerstein [29], this procedure maps the
collection of voids onto a discrete off-lattice network of sites (which may or may not be
occupied) and bonds (which may or may not connect).

Fig. 1 shows a two-dimensional schematic drawing of the steps thatconstitute the De-
launay decomposition procedure. For simplicity, in the following description we will refer
to the particular case of two dimensions; the generalisation to arbitrary dimensiond (and
specifically tod = 3) as well as a more detailed discussion will be given afterwards. Panel
(a) of Fig.1 depicts a matrix configuration of six hard-disc particles ofdiameterσ that
form a void. In panel (b), the centres of these discs are represented by full dots; at those
dots a number of circles intersect. Each of these circles exhibits a non-trivial property:
exactly three of the particle centres lie on its perimeter, and noneinside. There exists a
uniqueset of such “Delaunay circles”, which follows from Theorems5.8 and 5.11 in [35]
in conjunction with the fact that the collection of verticesin the dual Voronoi diagram
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is unique [35]. Panel (c) shows circles that are concentric to the Delaunay circles but re-
duced in diameter so that theytouchthe matrix particles. Consider now the fluid particles
that move in the array of obstacles: suppose their diameter is σ , like that of the matrix
particles. For any obstacle-touching circle in panel (c) this means that if its diameter is
less thanσ , then no particle can be placed at the centre of this circle. Such circles are
marked in dark (grey) colour in panel (c). Consider now that,as depicted in panel (d),
triangles are formed by the matrix particles on the perimeter of each Delaunay circle;
these are called “Delaunay triangles”. If in panel (c) a fluidparticle cannot be placed at
the centre of some Delaunay circle, then the entire area of the corresponding Delaunay
triangle is inaccessible; hence, those triangles need not be considered in the further steps
of the decomposition. In panel (e), superimposed to drawing(d), in light (orange) colour
the area is shown in which no fluid particle of diameterσ can be placed. This way, it is
verified that no particle can reside in the Delaunay triangles that were previously identi-
fied inaccessible. Moreover, the void can now be identified visually, and it is clear that it
is a trap since “there is no path to the outside”. This intuitive conclusion can be formalised
by considering for each edge of a Delaunay triangle just the two particles that define it: if
they permit to place a fluid particle at the centre of such a “Delaunay edge”, then the two
neighbouring triangles areconnected. The result of applying this criterion is depicted in
panel (f), where the matrix particles are now blanked out. The Delaunay edges are high-
lighted according to their connectivity: the medium-shadethick (red) edges cannot be
passed by a fluid particle, whereas the light thin (green) edges permit passing (indicated
by the black bars). As can be seen in the leftmost Delaunay triangle of panel (e), it is
possible that a fluid particle cannot be placed within a triangle although it can be placed
at the centre of the corresponding Delaunay circle. This is because the centre of the circle
can resideoutsidethe triangle. Nevertheless, some edge of such a Delaunay triangle can
formally be connecting; since the other edges cannot be passed, the connectivity of the
Delaunay triangles correctly reflects connectivity of the voids even in this case.

In thed-dimensional case, and hence the cased = 3 relevant to this work, the following
generalisations apply. (i) The notion of Delaunay circles is replaced by that of Delaunay
d-spheres (spheres of dimensiond); they are defined by the centres of (d + 1) fluid par-
ticles1 that reside on their surface, and fulfil the requirement thatno particle centres are
located within them. (ii) The Delaunayd-spheres define Delaunayd-simplices; ind = 3
they have tetrahedron topology, i.e., four vertices, six edges, and four triangular faces.
For this reason, we will refer to the Delaunay 3-simplices as“Delaunay tetrahedra”; note,
however, that the triangle faces of a Delaunay simplex are generally not equilateral. (iii)
The Delaunayd-simplices are bounded by surface elements of dimension (d−1) which
are defined byd particles. Ind = 3 they consist of triangles which we will refer to as
“Delaunay faces”. Such a surface element is connecting if atthe centre of its circumhy-
persphere [defined by thed particles] a fluid particle can be placed.

2.3. Percolation algorithm

After completion of the decomposition procedure, for each Delaunay tetrahedron it is
known whether its circumsphere is accessible to the centre of a fluid particle, and for each
Delaunay face it is known whether it is connecting or not. In the network picture that
was previously alluded to [29], the tetrahedra correspond to sites and the faces represent
bonds: both of these can be occupied or not, but bonds can exist only between occupied
sites. In the next step, these building blocks are assembledinto connected groups, each of
which describes a void. In case that a group consists of a finite number of members, this

1Note that there may exist spheres with more than(d+ 1) particle centres on their surface and none inside; in this case a
single sphere defines more than one Delaunayd-simplex. Since there is no unique way to define the Delaunayd-simplices
inside suchd-spheres, the resulting Delaunay diagram is called “frustrated”.
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Figure 2. Two-dimensional schematic representation of a complete Delaunay decomposition of a random arrangement
of eight obstacles with periodic boundary conditions. Dark(blue) solid discs: matrix particles. Medium-shade thick (red)
lines: non-connecting Delaunay edges (see Fig.1). Light thin (green) lines: connecting edges. Thin black lines: box borders,
separating periodic images. Dark (grey) areas: non-accessible Delaunay triangles. Light (yellow) area: initial triangle in the
procedure to determine the connectivity of the triangle groups. Medium-shade (pink) triangle: first triangle for whicha
periodic image is encountered in that procedure.

is a relatively minor challenge; if on the other hand the group spans across the simulation
box (considering the periodic boundary conditions), it is vital to avoid a multiple counting
of tetrahedron images while still being able to identify whether the void is percolating. For
this task, we devised a novel algorithm, as described in the following.

To allow for a visual description (see later), we will again employ the terminology
of two dimensions; the generalisation of the procedure to three dimensions is straight-
forward. The starting point is marked by choosing at random aDelaunay triangle of which
it is not yet known to which group of triangles it belongs. First, we add this triangle to
a list and store its location (for instance the centre of the corresponding Delaunay circle)
as the origin of the triangle group. We then consider each Delaunay triangle that borders
the current triangle via a connecting edge: First, we compute its location by adding the
difference vector between the bordering and the current triangle to the position of the
latter. Then, we check if the bordering triangle is already an element of the list: If not,
we add it to the list and store its location. If it is already contained in the list then the
stored location of the triangle is retrieved and compared with the location just computed;
if those locations do not match then the newly-found triangle is a periodic image of the
one already contained in the list, and the triangle group defined by the listmustconstitute
a percolating void. After checking all of the bordering triangles, the current triangle is
marked “processed”; then, the unprocessed triangle with the lowest identifier is retrieved
from the list, and the same procedure is repeated. This is iterated until the list contains
solely processed triangles; the list then contains all triangles in the triangle group.

To clarify this procedure, consider the schematic drawing shown in Fig.2. Suppose at
the beginning the triangleT1 is the only element of the list and its location has been stored.
Then, in the first loop,T2 andT6 are added to the list. In the second loopT1, T3, andT7
are considered, but sinceT1 is encountered at the same location as previously saved, it is
discarded and onlyT3 andT7 are added to the list. In the third loop, onlyT4 is added; in
the fourth loop this is done forT5 andT8. In the fifth loop, finally,T6 is encountered, but
at a location differing from the encounter in the first loop. Therefore, the group must be
percolating. In order to find the remaining triangles, the procedure is then continued atT6,
which yields no additional entries to the list, and then atT7.

After applying the same dimensionality generalisations asbefore, the three dimensional
procedure is described by the following pseudo-code:
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Figure 3. Two-dimensional schematic drawing of the rastering technique applied to each Delaunay simplex to determine
the volume therein that is accessible to the centre of a fluid particle. Each square represents one rastering grain. Dark (blue)
solid discs: matrix particles. Light (orange) solid discs:non-accessible area. Black empty triangle: a Delaunay triangle.
Empty squares: grains that are not located within the triangle. Dark (grey) squares: inaccessible grains that belong tothe
triangle. Medium-shade (pink) squares: accessible grainsthat belong to the triangle.

while list contains unprocessed tetrahedrado
choose unprocessed tetrahedron with lowest id
for all tetrahedra bordering a connecting facedo

compute location
if not on listthen

save location, add to list
else if computed6= stored locationthen

mark group “percolating”
end if

end for
mark current tetrahedron “processed”

end while

2.4. Volume rastering technique

The procedure described so far is sufficient to distinguish between traps and the perco-
lating void(s). However, in order to analyse in more detail thestatisticsof the voids, it is
useful to also determine their volumes, i.e., the amount of space accessible to the centre
of a fluid particle in each void. This allows for instance to trace out void size distributions,
which may then be used to interpret the dynamic behaviour of fluid particles moving in
the obstacle array. Also, knowing the void volumes renders it possible to precisely eval-
uate the average fraction of trapped particles in QA systems. Moreover, consider that the
voids undergo a percolation transition [36] when varying the matrix densityφm: above a
certainφ ∗

m no percolating void exists. In an infinitely-large system, this transition is sharp;
however, in systems of finite size more care has to be taken to reliably identifyφm. In this
context knowledge about the void volumes is useful, although it also possible to conduct
investigations on this phenomenon based solely on the Delaunay decomposition [31].

Sastry and coworkers [30] developed a complete, but rather complicated formalism to
exactly determine the size of a void formed by hard spheres. Since for the purpose of this
work we were merely interested in a reliable estimate of the void sizes, we opted for a
simpler approach like done for instance in [32]. In this approach, the volume is rastered
by considering a large number of cube-shaped “grains” arranged in a simple cubic lattice:
first, for each Delaunay tetrahedron the grain centres located inside the tetrahedron are
determined; subsequently, for each of the corresponding grains it is checked whether the
centre of a fluid particle can access the grain centre. The accessible volume inside a single
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Figure 4. Selected quantities that describe the confinementstructure without using information on the notion of traps and
the percolating void. (a) ProbabilityPtetrhed(φm) that a fluid particle can be placed inside the circumsphere ofa Delaunay
tetrahedron. (b) ProbabilityPface(φm) that a Delaunay face is connecting. (c) ProbabilityPgrain(φm) that a grain centre is
accessible to a fluid particle. Definition of the analytic function PCS

grain(φm): see text. Curves for different matrix particle
numbersNm are virtually indistinguishable. Error bars (barely visible) represent one standard deviation of the mean over
different system realisations. Vertical dashed line: percolation thresholdφ∗

m as determined from Fig.8.

tetrahedron is then the number of accessible grains times the volume of a grain, the latter
being simply the lattice spacing to the third power. In combination with the information
about the connectivity of the Delaunay tetrahedra, the grains allows to evaluate the volume
of each void. The rastering procedure is visualised in Fig.3, where accessible grains
located inside the tetrahedron are indicated by squares shaded in a medium (pink) tone,
whereas grains that belong to the tetrahedron but are not accessible are represented by
dark (grey) squares. The lattice depicted in Fig.3 features merely six grains per particle
diameter; this resolution is considerably coarser than theone used in our investigations.
For computing most observables we employed a lattice spacing of 15 grains per particle
diameter; for determining the unweighted void size distribution (Fig. 7 in Sec.3.2) we
increased this figure to as much as 100. Unless stated otherwise in Sec.3, uncertainties
associated with the finite size of the grains are much less significant than statistical errors.

3. Results

3.1. Statistics of the Delaunay decomposition

Before we turn to a detailed discussion of the voids, we investigate some of the statistical
features of the underlying Delaunay decomposition and the accessible volume. For this,
no information about the notion of traps and percolating voids is required. In Fig.4, three
quantities are presented that vary with the matrix packing fraction,φm, and can easily
be extracted from the procedure discussed in Sec.2. Panel (a) showsPtetrhed(φm), the
probability that a fluid particle can be placed inside the circumsphere of a Delaunay tetra-



Molecular Physics 1339

hedron; panel (b) depicts the related quantityPface(φm), the probability that a Delaunay
face is connecting. Panel (c) presentsPgrain(φm), the probability that a grain centre is
accessible to a fluid particle. The latter quantity can of course be calculated without the
Delaunay decomposition; it merely represents the overall volume accessible to the centre
of a fluid particle. By combining Eq. 2 in [37] and Eq. 2.7 in [38], it is also possible to
obtain the analytic expression

PCS
grain(φm) = exp

{

−
8φm−9φ 2

m +3φ 3
m

(1−φm)3

}

(1)

for the accessible volume; the derivation is based on the Carnahan-Starling (CS) equa-
tion of state [39] and the excess chemical potential. (Note that the index “grain” was
retained for notational simplicity only; the derivation ofEq. (1) is ignorant of the concept
of grains.) For comparison,PCS

grain is included in Fig.4(c) as a light (grey) background
curve.

Anticipating that theφm range considered in Fig.4 includesφ ∗
m, the density at which the

percolation transition of the voids takes place (indicatedby the dashed vertical line), the
most striking feature of these three probabilities is that nothing even remotely indicates
this fact. On the contrary, none of the quantities considered decreases by more than a
factor of two over the entire range ofφm, and all do so in a strictly monotonic fashion.
Therefore, as has been discovered before [31, 37], a simple analysis ofPgrain cannot be
capable of predicting the correct dynamics of a QA mixture ifφm is close toφ ∗

m, and
neither could an analysis based on the other two probabilities. As expected,Ptetrhed, Pface,
andPgrain are found to be independent of the size of the system; thanks to the large number
of averaged elements, the curves for different system sizesare virtually indistinguishable
and errors are minute. The accuracy of the data is even more evident from panel (c),
where they are superposed toPCS

grain, which can be regarded to be essentially exact. As
an interesting side finding (not shown in a plot), we determined the that average number
of Delaunay tetrahedra per matrix particle,ntetrhed(φm), monotonically decreases from
ntetrhed(0.235)= 6.584±0.003 tontetrhed(0.270)= 6.547±0.003. Note that in a periodic
system the number of Delaunay faces is exactly twice that of the tetrahedra.

3.2. Statistics of the voids

Figure5 gives a visual impression of a Delaunay decomposition (a) and of the subsequent
volume rastering (b) for a sample system containingNm = 714 matrix particles; the latter
number is typical for the simulations performed in [25, 27, 28]. In both panels, elements
coded in darker (red) shade constitute traps, whereas elements in lighter (green) shade
belong to the percolating void. In panel (a), only Delaunay tetrahedra were considered for
which a fluid particle can be placed at the centre of the circumsphere. Panel (b) indicates
that for the major part of the accessible volume, the rastering technique yields results
of adequate accuracy; merely for very small voids the methodsuffers from inaccuracies.
However, since the latter voids comprise only a minute fraction of the accessible volume,
those inaccuracies should have negligible impact when analysing the dynamics of an an-
nealed fluid in conjunction with information about the void sizes. From panel (b), it is also
evident that the structure of the accessible volume is highly nonuniform, with the voids
covering a large range in size and shape.

The most straight-forward quantity to extract from the percolation analysis described
in Sec.2.3 is of course the probabilityPpercol(φm) that a system contains a percolating
void; naturally it provides one means to estimateφ ∗

m, the percolation threshold of the
void space.Ppercol depends not only upon the matrix packing fractionφm, but also on the
size of the system, here quantified by the number of matrix particlesNm. Since periodic
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(a) (b)

Figure 5. Three-dimensional representation of the objectsresulting from a Delaunay decomposition and a subsequent
rastering (cf. Sec.2) applied to a sample matrix consisting of 714 particles. Dark (red): objects pertaining to traps. Light
(green): objects that constitute the percolating void. (a)Delaunay tetrahedra for which a fluid particle can be placed at the
circumsphere centre. (b) Grains for which a fluid particle can be placed at the centre.
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boundary conditions were employed, with respect to an infinitely-large systemPpercol in
small systems is enhanced aboveφ ∗

m, while belowφ ∗
m the reverse is true. From Fig.6,

panel (a), this smearing-out in small systems is immediately evident; such finite-size ef-
fects are well-known from order parameters in first- and second-order phase transitions
where they are associated with cutting off a divergent length scale (see, e.g., [40]). As
expected,Ppercol approaches a step function asNm is increased. An estimation ofφ ∗

m is
provided by the interval over whichPpercol changes from 1 to 0 for the largest system con-
sidered. This procedure yields 0.248< φ ∗

m < 0.254, an interval that indeed encloses the
more precise value that we will later extract from Fig.8, indicated by the vertical dashed
line in Fig.6. Note that it is a coincidence that thePpercol curves for differentNm intersect
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φm below, close to, and above the percolation transition. (a) Unweighted probability, forNm = 100 matrix particles. (b)
Probability weighted withV, for Nm = 64000. Error bars: see Fig.4.

at points distributed over a narrowφm range; this is unrelated to scaling considerations
and does not serve as a more precise estimate [36].

Panel (b) of Fig.6 shows another interesting quantity, namelyPtrap(φm), the fraction
of accessible volume that is located in traps (as opposed to the percolating void). As
expected,Ptrap approaches unity asφm is increased towardsφ ∗

m; finite-size effects similar
to those inPpercol can be observed. However, unlike the latter,Ptrap does not converge
to a step function asNm is increased since belowφm traps are encountered in systems of
any size. Consequently, distilling the interval containing φ ∗

m from Ptrap is somewhat less
precise than extracting it fromPpercol. The significance ofPtrap lies in a different reason:
recall that for setting up QA systems the particles of the fluid component are inserted into
the matrix at random positions [25, 27, 28]. Considering this, it is clear thatPtrap describes
precisely the average fraction of fluid particles that are located in a trap. Therefore,Ptrap

at a certainφm can be used to obtain some observable of the full fluid by performing (at
the sameφm) an appropriately-weighted average of the same observablepertaining to the
trapped and to the free particles.

As mentioned previously, voids of vastly differing size andshape are present in a QA
system. The latter finding is not unexpected and can be quantified in a more succinct
fashion by computing, at fixedφm, the probability distribution of void volumes. First,
recognise that given a system at a specificφm and Nm, the volume of the percolating
void(s) is known as

Vpercol(φm) = [1−Ptrap(φm)] Pgrain(φm)
[π

6
Nmφ−1

m

]

. (2)

Since this means thatVpercol(φm) can be calculated solely from quantities already dis-
cussed, in the following we will consider only traps.

In Fig. 7(a) we present the probabilityP(V) that a given void contains an accessible
volumeV; panel (b) shows the same quantity weighted withV. In the case ofP(V), the
probability distribution exhibits interesting features over a large range of void volumes
(note the logarithmic volume scale in Fig.7), including in particular very small values
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Figure 8. Average volume of the voids formed by the matrix, depending of the matrix packing fractionφm. (a) Volume-
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estimate of the percolation thresholdφ∗

m based on position of the peak in panel (a). Error bars: see Fig. 4. [Note that panel
(a) of this figure corresponds to panel (b) in Fig.7, and vice versa].

of V. In order to trace out the distribution to such small volumes, we considered systems
containing merely 100 particles. This necessity arose fromthe fact that a small grain vol-
ume entails a large number of grains, and from the fact that computer memory is limited.
However, considering thatP(V) does not show interesting features aboveV ∼ 101, the
choice ofNm = 100 is sufficient. Using a grain edge lengthLgrain = 0.01 (i.e., 100 grains
per particle diameter), the systems comprisedNgrain ∼ 6003 grains; this allowed reliable
calculations of void volumes for voids exceedingV ∼ 10−5. Below this value ofV, data
in Fig. 7(a) suffers from finite-size effects; this concerns in particular the upward “kink”
in this range ofV.

The most interesting feature of Fig.7(a) is the fact that there is, almost like in Fig.4,
little (if any) indication of a percolation transition. Merely a small shoulder forφm = 0.251
andV ∼ 101 hints at this fact. Instead, the location of the distribution peak continuously
shifts to larger values asφm is increased. Conversely, the volume-weighted distribution
P(V)V, presented in panel (b), shows clear evidence of a percolation transition. Since by
definition this quantifier emphasises large volumes, differences therein are enhanced: For
φm = 0.251, the distribution assumes values of 0.05 for volumes as large asV ∼ 103; for
the other two densitiesP(V)V falls off to lower values already at volumes smaller by two
orders of magnitude. Considering thatP(V)V is essentially zero beyondV = 104 and that
for Nm = 64000 andφm = 0.251 the total system volume is∼ 503 ∼ 105, uncertainties in
P(V)V arise solely from statistics and not from the finite size of the system.

Finally, we turn to the quantity that—disregarding finite-size scaling techniques—
allows for the most accurate [36] determination of the percolation transition: the second
moment of the void volume distribution

〈V〉vol (φm) =

∫ ∞

0
P(V)V2dV

∫ ∞

0
P(V)V dV

≃

Nvoids

∑
i=1

V2
i

Nvoids

∑
i=1

Vi

. (3)



Molecular Physics 1343

Here,Vi denotes the volume of voidi in a configuration at a given value ofφm; note
that, like in P(V), the percolating void is not included inNvoids. In an infinitely-large
system〈V〉vol(phim) diverges atφ ∗

m; a convergence to this behaviour can immediately be
seen from Fig.8(a). The divergence can easily be rationalised: First, consider that just
above the percolation threshold very large voids exist, which are “almost” percolating in
the sense that only in few locations a connection is disrupted by the matrix. Just below
the percolation transition voids are also large, since withan increasing number of obsta-
cles substantial accessible volumes are disconnected fromthe percolating void. Realising,
then, that〈V〉vol is the volume-weighted version of the average void size

〈V〉num (φm) =
1
V

∫ ∞

0
P(V)V dV≃

1
Nvoids

Nvoids

∑
i=1

Vi (4)

it is clear that a large void will have large weight. Since in we excluded the percolating
void, for φm 6= φ ∗

m no infinite weight can be present in〈V〉vol. Therefore, the latter can
diverge only atφ ∗

m. For completeness, in panel (b) of Fig.8 we also show〈V〉num; note,
however, that the maximum of this quantity doesnot correspond toφ ∗

m. Focusing, finally,
on the position of the peak in〈V〉vol, the best estimate emanating from the present work
for the percolation threshold in QA systems of equal hard spheres isφ ∗

m ≃ 0.251(2±2).

4. Discussion and Conclusions

The primary objective of this work was to introduce a geometric method that reliably
identifies which of the voids formed by an arbitrary matrix ofimmobile hard spheres are
of finite volume and which are infinitely large. In Sec.2 we presented an efficient algo-
rithm based on a Delaunay decomposition that suits this requirement specifically in the
presence of periodic boundary conditions. Given a set of mobile hard-sphere particles that
occupy random locations within such a matrix, this method provides a clear-cut means to
determine which among the mobile particles are “trapped” (located in a void of finite size)
and which are “free” (located in an infinitely large void). Itis worth noting that although
trapped particles may not be relevant or not even realised inexperimental setups, it is of
paramount importance to explicitly include these particles when testing theoretical frame-
works that explicitly require their presence—only this waysuch theories, which represent
the state of the art to describe fluids in disordered confinement, can be scrutinised and
subsequently improved.

The method introduced in Sec.2 also enables to evaluate various statistical properties
of the voids formed by such matrices, which is interesting and useful on its own right.
In Sec.3 of this work, we chose to focus on matrices quenched from an equilibrated
hard-sphere fluid since such matrices are the key feature of QA systems. The result that
stands out from this study is the highly accurate determination of φ ∗

m, the packing fraction
at which the percolation transition of the voids takes placefor QA systems of identical
hard spheres. This percolation transition is intimately connected to the dynamic arrest of
the fluid particles that move in the host matrix, and its determination using the method
introduced in this work provides an independent verification of previous investigations
such as Refs. [25, 27, 28, 41]. We determined the percolation transition to take place at
φ ∗

m = 0.2512, which is in excellent agreement with the findings of theabove works, which
unanimously found the fluid to exhibit subdiffusive behaviour for φm ∼ 0.25 (or slightly
above this value) and in all cases this fact was attributed tothe underlying percolation
transition of the voids. There is an apparent slight disagreement with the investigation by
Sung and Yethiraj on the “random matrix” protocol [31], for which they found the per-
colation transition to take place atφm ∼ 0.24. However, considering that in this protocol
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the matrix particles are serially inserted into the simulation volume and remain fixed at
their insertion locations (see [31] for details), this discrepancy can probably be attributed
to the fact that random matrices of this kind do not representconfigurations of an equili-
brated fluid. This would be in agreement with the finding of thesame authors, as well as
other authors [26, 32, 42], thatφ ∗

m depends sensitively on details of the matrix preparation
protocol.

There are several possible applications and routes of action emerging from the ge-
ometric method presented in this contribution. One of the most straight-forward uses,
namely performing a separation in trapped and free particles for QA systems of equal
hard spheres, has been been investigated by the authors in a concurrent publication [28].
The results in that contribution have turned out to provide interesting insights into the
capabilities of MCT to describe the dynamics of dense QA systems. Furthermore, it is
possible to apply our method without modification to systemsin which the fluid parti-
cles have a radius different from that of the matrix particles, and even to systems with
polydisperse fluid particles. In the latter case, the only caveat is an increasingly involved
analysis since the void connectivity has to be evaluated separately for each fluid particle,
which unfortunately also renders the interpretation intricate. Our method isnot directly
suited for application to matrices consisting of polydisperse particles; however, it can
be extended to this case in a straight-forward façon by making use of the solutions to
the so-called “Apollonius’ Problem” (i.e., the problem to find a circle that touches three
other circles) and its higher-dimensional generalisations in appropriate places of the al-
gorithm. In this context it is due to mention a different route to geometrically analysing
polydisperse matrices which has been explored by Sastry andcoworkers, who extended
the Voronoi construction (which is dual to the Delaunay decomposition) to this case [30].
Another natural application of our method would be to analyse matrices constituted by
particles that interact through a continuously varying pair potential. If the hard-sphere
potential represents a low-temperature limit of such a potential (which is the case, e.g.,
for the Lennard-Jones potential) the decomposition methodcould be used to perform a
separation in regions of low and high energy, as has been donein Refs. [37, 43].

Finally, also the quantities presented in Sec.3 and related descriptors of the void struc-
ture offer promising routes to directly compute the dynamics of a confined fluid from
structural information of the host matrix. For instance, advanced simulational methods
can be devised, like the Monte Carlo simulations on Voronoi networks performed in [31],
and theoretical approaches can be worked out which involve not only the total accessible
volume [37] but also the distributions of the void volumes and of the void connectivities.
This way, hopefully, answers can be provided to the dire needfor improved theories and
extended simulations on fluids in disordered confinement, tothus finally rationalise the
existing plethora of experimental information in this field.
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