
THE JOURNAL OF CHEMICAL PHYSICS 133, 224504 (2010)

Ordered equilibrium structures of soft particles in thin layers
Mario Kahn,1 Jean-Jacques Weis,2 and Gerhard Kahl1
1Institut für Theoretische Physik and Center for Computational Materials Science (CMS), Technische
Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
2 Laboratoire de Physique Théorique UMR8627, Université Paris-Sud, F-91405 Orsay, France

(Received 9 April 2010; accepted 8 October 2010; published online 10 December 2010)

Considering a system of Gaussian particles confined between two hard, parallel plates, we investi-
gate at T = 0, ordered equilibrium configurations that the system forms as the distance D between the
plates gradually increases. Using a very sensitive and reliable optimization technique that is based
on ideas of genetic algorithms, we are able to identify the emerging sequences of the energetically
most favorable structures. Although the resulting phase diagram is rather complex, its essential fea-
tures can be reduced to the discussion of two archetypes of structural transitions: (i) a continuous
transformation at a fixed number of layers, leading from a square to a centered rectangular and then
to a hexagonal lattice; (ii) a discontinuous transition, transforming a hexagonal to a square lattice
via complex intermediate structures, i.e., the so-called buckling transition, which is encountered as
the system forms a new layer. Detailed Monte Carlo simulations are able to confirm the theoretical
predictions on a semiquantitative level but are not able to grasp the tiny energetic differences between
competing structures. © 2010 American Institute of Physics. [doi:10.1063/1.3509380]

I. INTRODUCTION

How does a three-dimensional crystal grow out of
two-dimensional lattice? It was probably Pieranski and co-
workers1 who carried out the first experiments to elucidate
this fundamental question. In their experimental setup, the
authors confined polysterene particles between two parallel
hard plates, separated by a vertical distance D. By gradually
increasing D, the authors were thus able to investigate in a
systematic way the layer-by-layer growth of the system. This
study revealed that the system forms with increasing D lay-
ered structures with alternating square (�) and hexagonal(�)
in-layer structures. The observed structural transitions could
thus formally be written as 1�→2�→2�→3�→. . . , where
the integer represents in this formalism the number of layers,
nl , that the system forms. In an effort to understand in partic-

ular the process where the system forms a new layer, authors
from the same group put forward in a subsequent contribution
a theoretical model:2 based on a simple hard sphere picture,
the ordered structures that the system forms were identified as
those particle arrangements where the volume density is max-
imized. In their approach the authors described for the first
time the buckling transition that leads from a hexagonal lattice
in a system with nl layers to a square lattice in a system with
(nl + 1) layers. Van Winkle and Murray3 investigated shortly
afterward a closely related system with up to seven layers
and reported about similar but not identical structures as the
ones identified by Pieranski et al.1 A few years later, more
systematic investigations were carried out by Neser et al.,4

taking benefit of the advent of refined experimental meth-
ods: the authors provided very detailed information about the
complexity of structural sequences occurring at the buckling
transition. In more recent experiments,5–9 the occurrence
of buckling, rhombic, prism, or so-called hcp-perpendicular
phases has been reported, as well as the identification of the
complex, so-called S1 and S2 phases.

Chou and Nelson10 were probably the first ones to study
the layer-by-layer growth of a three-dimensional crystal with
theoretical tools. Motivated by the work of Van Winkle and
Murray3 the authors developed a free energy functional in
order to study in confined colloidal systems the stability of
the buckling transition as the system transforms from a sin-
gle layer to a double layer arrangement. Several years later,
Schmidt and Löwen11, 12 carried out extensive Monte Carlo
(MC) simulations and developed a free volume theory to
study the formation of ordered structures in systems between
two and three dimensions. Zangi and Rice13 investigated with
extensive molecular dynamics simulations the solid-to-solid
transition in two- to six-layer colloidal systems, dedicating
particular effort to the buckling transition. Further theoretical
investigations were carried out by Bock et al.,14 introducing a
zero-temperature density functional to investigate the ordered
structures formed by Lennard-Jones particles, confined be-
tween two model graphite sheets. Recent MC simulations of
hard spheres confined between two parallel hard plates have
been performed by Fortini and Dijkstra.15

Despite all these remarkable efforts to elucidate this
complex process from different points of view and using
a broad variety of different tools, a full understanding of
this complex structural change is still missing. While there
is unanimous agreement on the details of the transition
nl�→nl�, the results about the structural details of the tran-
sition nl�→(nl + 1)� are not fully consistent (cf. Table 1 of
Ref. 15).

The aim of the present contribution is to reconsider the
problem with an entirely different approach. Since particles
arrange at any stage of the growth process in such a way that
the related thermodynamic potential is minimized, these or-
dered configurations can be obtained with the help of suit-
able optimization tools. Our approach therefore requires (i) a
highly accurate evaluation of the thermodynamic properties
and (ii) a reliable optimization technique. In an effort to make
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the evaluation of the thermodynamic properties as accurate
as possible we restrict ourselves to zero temperature, where
the thermodynamic potentials reduce essentially to the lattice
sum, U . While the walls are simply introduced for confin-
ing the system, we assume a Gaussian potential between the
particles. On one side, this interaction represents a reason-
able model potential for ultrasoft colloids; on the other hand,
its rapid decay with distance guarantees that the evaluation
of the lattice sum can be achieved within machine precision.
The ordered equilibrium particle arrangements are identified
via an optimization strategy that is based on ideas of genetic
algorithms (GAs). Meanwhile numerous applications of GAs
in soft matter systems have given evidence that this approach
is indeed a reliable, efficient, and numerically robust tool that
copes well both with high dimensional search spaces as well
as with rugged energy landscapes.16–34We also point out that
a preliminary account on the problem addressed in this con-
tribution has already been presented in Ref. 35.

Our theoretical investigations are complemented by MC
simulations. In an effort to be as “close” as possible to the
theoretical description, the simulations have been performed
at very low temperature. By assuming different initial condi-
tions and by using adaptive cell geometries we have avoided
any possible bias of the results by the initial conditions.

The conclusions that we can draw from our investiga-
tions are the following: structural transitions between states
that have the same number of layers can be described on
a numerically high level of agreement by our two comple-
mentary approaches. For the buckling transition, on the other
hand, computer simulations confirm on a semiquantitative
level the theoretical predictions for averaged observables,
such as the orientational bond order parameter or the (in-
layer) pair distribution function (PDF), that characterize the
emerging structures. However, we are not able to identify
the complex structural sequences themselves that occur
during the transition from the simulation data. A closer
investigation of the theoretical data provides an explication
why simulations are not able to provide such information
about the buckling transition: this structural change is charac-
terized by a sequence of complex structures where competing
lattices are characterized by minute energy differences. In
addition, the buckling transitions occur in narrower parameter
intervals and the emerging structures become more complex
as nl increases; thus, even our essentially exact theoretical
approach faces enormous difficulties to identify the ordered
equilibrium structures for nl � 4. Computer simulations of
limited size, limited simulation length, and finite temper-
ature are not able to grasp these tiny energy differences.
With this in mind, it becomes better understandable why
sometimes inconsistent results for the buckling transition
are obtained from theoretical, experimental approaches and
simulations.

The paper is organized as follows: in Sec. IIwe present
the underlying model for the layered system in terms of the
particle interaction and the parameterization of the geometry.
In Sec. III we briefly present our theoretical approach (refer-
ring for more extensive presentation to previous work) and
provide details of our MC simulations. Results are discussed
in Sec. IV and we close the paper with concluding remarks.

II. THE SYSTEM

A. The interaction

The particles of our system interact via a Gaussian poten-
tial, i.e.,

�(r ) = ε exp[−(r/σ )2], (1)

where ε and σ represent energy- and length-scales. Further-
more, the system is characterized by its volume number den-
sity, ρ.

The choice for this particular functional form of the po-
tential can be justified both from a physical as well as from
a computational point of view. (i) The Gaussian potential,36

representing one of the standard models in soft condensed
matter physics, can be viewed as an ultrasoft, effective inter-
action between soft particles. It is well known in literature as
a reasonable model potential for polymers,37 dendrimers,38, 39

or microgels.40 In addition, detailed knowledge about its full
bulk phase diagram is available in literature.41, 42 Of partic-
ular relevance for the work presented here is the fact that
the system solidifies at very low temperatures in an fcc lat-
tice for ρσ 3 � 0.1794, while the system is expected to form
a bcc phase for 0.1798 � ρσ 3. (ii) The functional form of the
Gaussian potential brings along considerable numerical ad-
vantages: the fast decay with distance along with the fact that
�(r ) > 0 for all r -values suppresses the emergence of trunca-
tion and compensation errors in the evaluation of lattice sums,
which therefore can be evaluated within machine precision.
In our investigations we have introduced a cutoff radius, rcut,
which is defined via∫ ∞

rcut

�(r ) dr � δ

∫ ∞

0
�(r ) dr ;

typical numerical values are δ = 10−8 and thus rcut ∼ 4.3σ .

B. The model

To parameterize the ordered layered structures we view
the system as a stacking sequence of nl two-dimensional lay-
ers. The top and the bottom layer are separated by a distance
D. It is convenient to introduce the area number density, η,
given by

η = ρD

nl
.

For computational reasons we have made three assumptions,
denoted by A1 to A3, which can easily be put to a critical
assessment via a direct comparison with simulation data.
Defining a “simple layer” as a layer where particles form a
simple lattice, we assume that

A1. particles arrange in two-dimensional structures only
within the layers, i.e., the inter-layer regions are com-
pletely void;

A2. each simple layer is characterized by the same η-values;
A3. the two-dimensional lattices in the different simple lay-

ers are identical.

We point out that from the numerical point of view these
assumptions are absolutely indispensable for the application
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of GAs to keep the dimensionality of the search space within
manageable limits, offering thus the possibility of detailed in-
vestigations, that can even be extended to systems with large
numbers of layers. We anticipate that the above three assump-
tions will be fully confirmed by the complementing computer
simulations (cf. detailed discussion in Sec. IV E).

The nl layers are arranged perpendicular to the z-axis.
The top and the bottom layers, carrying indices 1 and nl , are
fixed in their vertical positions at z = 0 and z = D, respec-
tively. They confine the system in the vertical direction with-
out assuming any particular wall–particle interaction. The
remaining (nl − 2) layers are allowed to be positioned within
the range 0 ≤ z ≤ D; their vertical positions are denoted by
zi . Of course, the vertical interlayer distances, hi = zi+1 − zi ,
with hi ≥ 0, i = 1, . . . , nl − 1, have to sum up to D, i.e.,

nl−1∑
i=1

hi = D.

We emphasize that collapsing layers, i.e., layers characterized
by the same vertical positions and, consequently, by vanish-
ing hi -values, are explicitly included in the concept: this fea-
ture provides the possibility to consider in a straightforward
way the parameterization of nonsimple two-dimensional lat-
tices within a layer (see below).

The simple ordered two-dimensional lattices can be spec-
ified by lattice vectors a (which, for simplicity, we assume to
be parallel to the x-axis) and b. Thus vectors a and b, which
form the unit cell, can be parameterized via

a = a(1, 0), b = a(x cos ϕ, x sin ϕ),

where 0 ≤ ϕ ≤ π/2 and 0 ≤ x ≤ 1. a is related to η via

a2 = 1

ηx sin ϕ
.

Furthermore, we introduce interlayer vectors, ci , i = 1,

. . . , nl − 1 that connect the origin of the unit cell of layer i
with the origin of the neighboring layer with index (i + 1);
the ci can be parameterized via

ci = αi a + βi b + hi ẑ,

where ẑ is the unit vector in the z-direction; the hi has been
introduced above.

Thus, in total, the layered structure is specified by
the following set of (3nl − 2) parameters: {x, ϕ, [αi , βi ,

i = 1, . . . , nl − 1], [hi , i = 1, . . . , nl − 2]}.
Of course, the parameterization of a given structure via

a, b, and the set of ci is not unique. In an effort to make the
optimization routine as efficient as possible, one has to reduce
this ambiguity to the highest possible degree. We achieve this
goal by choosing a and b in such a way that the circumference
of the unit cell is minimized while selecting for the ci the
shortest possible representatives.

With a set of nb collapsing, simple layers, i.e., nb

layers that have the same vertical position, a nonsimple
two-dimensional lattice with (nb − 1) basis particles can be
parameterized: the (nb − 1) interlayer vectors ci are now hor-
izontal (since their corresponding hi -values vanish), defining
thereby the basis of the nonsimple lattice. This feature will

be in particular useful when discussing the so-called buckling
transition (cf. Sec. IV C).

Finally, we point out that the transition from the quasi-
two- to the three-dimensional lattice is realized by consider-
ing the limiting case D → ∞ (cf. Sec. IV D).

III. THEORY AND SIMULATIONS

A. Theory

At a given state point in the (D, ρ)-plane the or-
dered equilibrium configuration is determined by minimiz-
ing the corresponding thermodynamic potential. This mini-
mization has to be performed in the (3nl − 2)-dimensional
search space, spanned by the parameters that character-
ize a layered structure (see above) and consider a reason-
able number of layers. As specified in detail in Sec. I,
the optimization techniques based on GAs have proven to be
reliable and efficient numerical tools in investigations on the
ordered equilibrium structures for a broad variety of soft mat-
ter systems.16, 18–33, 35

For the present contribution we have developed a geno-
type GA-code,43 drawing from our experience on successful
codes developed for two-22, 24 and three-dimensional28, 29, 43

systems. Similar as in previous applications we have used
12- and 6-bit representations for encoding lengths and an-
gles, respectively. In a single GA-run, 1200 generations were
considered, each of them having 500 individuals. For most of
the state points considered, at least 20 independent GA-runs
were performed. The crossover operation was carried out via
a uniform crossover algorithm, assuming a mutation rate of
0.35%. In a final step, the solution proposed by the GA-run
was refined in a steepest descent search.44 For details we refer
to Refs. 43 and 45.

Working at T = 0, at fixed volume and particle number,
the thermodynamic potential to be minimized is the lattice
sum, U . Its evaluation was truncated at the cutoff radius rcut

introduced in Sec. II A. The suitability for a successful repro-
duction of a lattice, S, is calculated via the fitness function
f (S). Since we search for the energetically most favorable
particle arrangement, f (S) is based on U (S). Here, we have
chosen the canonical form,43 i.e.,

f (S) = exp[1 − U (S)/U (S0)], (2)

where U (S0) is the lattice sum of a reference square structure
of same density.

B. Simulations

To complement the theoretical approach structures we
have performed standard MC simulations in a canon-
ical (NVT) ensemble. For the (reduced) temperature,
T � = T/(kBε), kB being the Boltzmann constant, we have
chosen a value of T � = 0.002 which is (i) sufficiently close
to the vanishing temperature used in the theoretical investiga-
tions and for which (ii) solidification of the system over a rep-
resentative density-range is expected: the bulk phase diagram
of our system (e.g., given in Ref. 42), provides evidence that
for T � = 0.002 the system solidifies—apart from a very small
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region at low densities (i.e., ρσ 3 � 0.075)—in the entire
ρ-range considered in this study.

The setup of the simulation cell is identical to the the-
oretical model: the top and the bottom layers are fixed in
their vertical positions at z = 0 and z = D, respectively. In
the horizontal direction periodic boundary conditions were
applied. In an effort to avoid any bias of the emerging struc-
ture, the shape of the simulation cell is adaptive in its x- and
y-directions such that the volume remains constant.46–48 In
our simulation study systems with up to five layers have been
considered. In an effort to guarantee a sufficiently high nu-
merical accuracy, at least 500 particles per layer were consid-
ered and simulation runs were extended over 2 – 6 ×106 trial
moves per particle.

We have used different initial conditions for our simula-
tion runs. This was done in an effort to assess the theoretical
assumptions A1 to A3 (cf. Sec. II B) and to confirm via in-
dependent simulations the formation of a predicted ordered
structure for a given state point. For most of the systems in-
vestigated we used the following strategy: (i) if a hexagonal
structure is predicted by theory for a particular state point,
then particles were positioned in the initial configuration on
a rectangular lattice on predefined layers that were equally
spaced in their vertical distances. If, on the other hand, the-
ory predicts a rectangular (or square) structure, then particles
were arranged on a hexagonal lattice for the initial config-
urations, again on equally spaced, predefined layers. In both
cases, the number of particles per layer was chosen to be com-
patible with the respective initial structure. (ii) Further, a more
general initial setup was considered for selected state points:
assuming an equal population on each layer, particles were
positioned in random positions on the layers, which, again,
were equally spaced in the vertical direction. (iii) Finally, we
have also considered the most general initial condition, where
the particles were positioned at random in the simulation
box.

Due to the finite size of the system, the limited simula-
tion time, and the finite temperature, the system is not able
to form perfect ordered structures. In an effort to characterize
the emerging structures, we have evaluated the in-layer distri-
bution function, g(r ), and the two-dimensional orientational
bond order parameters, 
4 and 
6,49 defined via


n = 1

N

〈∑
i

1

Nb,i

Nb,i∑
j=1

exp[in�i j ]

〉
, n = 4, 6. (3)

N is the number of particles and the brackets 〈· · ·〉 denote
an ensemble average. Further, Nb,i denotes the number of
nearest neighbors of particle i , a quantity which is determined
via a Voronoi tessellation.50 Finally, �i j is the angle of the
vector connecting particles i and j with respect to the Carte-
sian coordinate system.

g(r ) provides information about the correlations of parti-
cles belonging to the same layer; the positions of the peaks in
g(r ) are expected to coincide with the interparticle distances
in the predicted, ideal lattice. The order parameters, on the
other hand, provide an averaged information about the local
structure of the particles with respect to their neighbors. To be
more specific, 
4 represents an indicator for the square lat-

tice, attaining its ideal value, 
4 = 1, for a square lattice and
vanishing for the hexagonal lattice. For 
6 we encounter the
inverse situation: here, 
6 = 1 for the hexagonal lattice and

6 = 0 for the square lattice. For the (centered) rectangular
lattice no such indicator is available.

IV. RESULTS

A. Diagram-of-states

The diagram-of-states, depicted in Fig. 1, provides two
relevant pieces of information about the ordered equilibrium
structures of the system at a given state point. First, we learn
about the number of layers that the system forms: from Fig. 1
we see that state points that are characterized by a particular
number of layers populate stripe-shaped regions in (D, ρ)-
space; these regions are separated by full lines which will be
discussed in detail in Sec. IV C. Second, the diagram provides
information about the specific ordered structure that the sys-
tem forms. In total we observe four ordered equilibrium struc-
tures: the rectangular, the hexagonal (�), the square (�), and
the centered rectangular (R) lattice. The rectangular structure
is encountered only in a small region at low densities and low
D-values, while the other three structures can be identified in
the entire (D, ρ)-range investigated in this contribution.

We note that only a restricted range in D and ρ is dis-
played in Fig. 1; the diagram-of-states for the entire parameter
range investigated is shown in Fig. 1 of Ref. 35.

We start our discussion by focusing on one of the sub-
regions where the system forms a particular number of layers
and investigate in detail the sequences of emerging ordered
structures. We observe throughout the following, common
scheme: at the bottom of these stripe-shaped subregions, the
system forms square lattices; as we then proceed with in-
creasing D and/or ρ toward the upper boundary of this stripe
we encounter first centered rectangular lattices and, finally,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ρ σ3
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n
l
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n
l
 = 4

n
l
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n
l
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n
l
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FIG. 1. Diagram-of-states for the layered system considered in this study:
the ordered structures assumed by the system at given values of thickness D
and reduced density ρσ 3 are indicated via the following symbols: diamonds;
rectangular lattice; full squares; square lattice; triangles; hexagonal lattice;
and empty squares; centered rectangular. Regions where the system is com-
posed by nl layers are labeled by the respective nl -value; these regions are
separated by lines.
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the hexagonal structure. When crossing the boundary to the
adjacent stripe, the system forms a square structure with an
additional layer and by increasing the system parameters
we recover again the above structural sequence. Further,
we observe that the extent of the area where a particular
structure is identified varies strongly as nl increases. In
particular for larger nl-values, the diagram-of-states gives
the impression that some of the three structures are missing.
This is a consequence of our standard resolution in D and ρ;
more detailed investigations performed on finer subgrids in
selected areas of the (D, ρ)-plane confirm the existence of
all three structures, although they might populate for some
parameter combinations only rather narrow regions.

The diagram-of-states can be better understood and its
complexity can be significantly reduced as we filter out two
archetypes of structural transformations. In the first one the
number of layers is maintained: as D and/or ρ is increased we
observe a transition from a square to a centered rectangular,
and eventually to a hexagonal lattice; in a symbolic notation
this structural change can be represented by nl�→nlR→nl�.
Depending on the nl -value and on the “direction” as we vary
the system parameters in the (D, ρ)-plane, the square and the
centered rectangular structures are possibly observed only in
an extremely narrow parameter range. In its most pronounced
manner this structural transition can be identified as we vary
ρ while keeping D at a fixed value. Thus we will refer to this
as the “horizontal” transition. In Sec. IV B we will give ev-
idence for its continuous character. The second archetype of
transition is observed as the system forms a new layer with
increasing D and/or ρ, i.e., as we cross in the diagram-of-
states one of the lines that separate regions where the sys-
tem forms a particular number of layers. However, a sim-
ple symbolic representation of this transition, such as, nl�→
(nl + 1)�, does not capture the full complexity of structural
details as the systems creates a new layer. In literature, the
sequence of highly complex particles arrangements that char-
acterizes this structural change is termed buckling transition.
We furthermore report that the complexity of intermediate
structures increases drastically with growing nl . This transi-
tion emerges in its most pronounced manner as we vary D at
fixed ρ; thus we will refer to it as the “vertical” transition. We
will give evidence in Sec. IV C that this transition is discon-
tinuous.

The diagram-of-states, depicted in Fig. 1 has been ob-
tained as follows: we have fixed the density ρ and have
recorded in a first step for each D value the energet-
ically most favorable, ordered equilibrium structure; for
each parameter pair (ρ, D), a reasonably large set of nl-
values, termed {nl}, has been taken into account. As we
plot the lattice sums of these particle arrangements as func-
tions of D we arrive at a set of curves, U{nl }(D). In
Figs. 2 and 3 representative examples for these curves at a
small and a large density are displayed. We note that some
of these curves coincide over limited D-ranges, providing
thereby a very valuable information about the internal con-
sistency of our approach: a numerically accurate method re-
quires, for instance, that for nl = 2, 4, and 6 the respective
Unl -curves must collapse (cf. Fig. 2) since a simple lattice
(nl = 2) can alternatively be considered as a nonsimple lat-
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N
ε)
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nl=6

2.4 2.6 2.8 36.0×10
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-2
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FIG. 2. Reduced dimensionless lattice sum U/(Nε) as a function of D at
fixed density ρσ 3 = 0.15 as obtained by GA-based optimization runs, con-
sidering different numbers of layers nl as labeled. The inset displays the range
2.3 � D/σ � 3.1 where the buckling transition from nl = 2 to nl = 3 oc-
curs; for clarity only results for nl = 2, 3, and 6 are displayed.

tice (nl = 4 or 6), formed by collapsing, horizontally shifted
layers. In Fig. 3 we have depicted Unl -curves for a consider-
ably higher density, namely, ρσ 3 = 0.6. With respect to the
low-density case, we now have to take into account systems
with up to eight layers. As functions of D, the energy curves
lie very close to each other, which makes the identification of
the transition values in D very difficult.

In order to obtain at a given state point (D, ρ) the ordered
equilibrium structure, we fix ρ and consider the set of curves
U{nl }(D). Among these curves we search for the one that
attains the lowest U -value at the D-value of interest. In this
way we can identify the number of layers that the system
forms at this state point, the structure of the system, and its
thermodynamic properties. For example, from Fig. 2 we can
learn that at ρσ 3 = 0.15 and for 1 � D/σ � 2.75, the curve
Unl=2(D) represents the lowest lying energy curve, meaning
that the system forms two layers. Then emerges a small
transition region (2.75 � D/σ � 3), which is represented
in a magnified view in the inset of Fig. 2. As indicated by

0 1 2 3 4 5 6 7 8 9
D/σ

0.2

0.4

0.6

0.8

1

U
/(

N
ε) n

l
=2

n
l
=3

n
l
=4

n
l
=5

n
l
=6

n
l
=7

n
l
=8

FIG. 3. Same as Fig. 2 but for ρσ 3 = 0.6. No inset for the buckling transition
is shown.
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the respective Unl (D)-curves, we observe a transition from
a two- to an intermediate six-layer system which eventually
transforms into a three-layer system. The small intermediate
region, where the buckling transition takes place, will
be discussed in detail in Sec. IV C. For 3 � D/σ � 4.7,
Unl=3(D) is the lowest lying energy-curve, indicating that
the system forms three layers. Then comes another buckling
transition which now takes place in a considerably narrower
D-range (and which cannot be resolved on this scale) leading
eventually to a four-layer system. Collecting over a represen-
tative ρ-range, those D-values where the system undergoes a
buckling transition leads to the separating lines in Fig. 1.

B. The “horizontal” transition

Since the “horizontal” transition has been treated in
Ref. 35 only marginally, we will provide in the present
contribution more details on this structural change. This type
of transition is observed as D and/or ρ are varied while the
system maintains its number of layers; symbolically, it can be
written as nl�→nlR→nl�.

From simple geometric considerations it becomes obvi-
ous that this structural change must be continuous. This be-
comes evident as we consider all three structures involved
as particular realizations of the centered rectangular lattice,
characterized by different, specific values of side ratios, s.
The square lattice is specified by s = 1, while the hexago-
nal lattice is recovered for s = √

3. The “horizontal” transi-
tion is characterized by a smooth variation of s from s = 1 to
s = √

3. In Fig. 4 we have displayed the theoretical structure
prediction for a system specified by D = 3σ and by three dif-
ferent ρ-values, namely, ρσ 3 = 0.20, 0.25, and 0.30. From
these schematic representations the smooth change from a
square lattice via a centered rectangular structure to a hexag-
onal lattice becomes obvious.

These findings are fully confirmed in computer simula-
tions. In Figs. 5–7 we show representative snapshots of the
simulation cells viewed from above for exactly the same state
points as the ones treated in the theoretical approach (cf.

FIG. 4. Representation of the particle arrangements of an ordered equi-
librium structure at D = 3σ , during the “horizontal” transition (cf. discus-
sion in the text); the density values considered are ρσ 3 = 0.20 (�-lattice
with s = 1), ρσ 3 = 0.25 (R-lattice with 1 < b/a < 1/

√
3), ρσ 3 = 0.30 (�-

lattice with s = 1/
√

3), from left to right. Displayed are the top and the side
views of the ordered structures, where in the former case only the lower half
of the particle configurations are shown; in the upper half an identical, but
shifted particle arrangement is found. In the top view, unit cells that charac-
terize the underlying structure are marked as guide for the eyes.
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FIG. 5. Simulation snapshot of a layered system at D = 3σ and ρσ 3 = 0.20.
At this state point, the system forms three layers, only the particle positions
in the two lower layers (specified by the different shading) are displayed.
529 particles per layer have been considered. The initial simulation box was
quadratic with a side length of 51.4 σ ; its shape at the instant of the snapshot
is delimited by the thin gray lines. Extensions of the simulation box in x- and
y-directions are given in units of σ . For this particular state point we obtain

4 = 0.95 and 
6 = 0.16.

Fig. 4). From these snapshots we obtain a first impression of
the respective ordered structures that the system forms in a
computer simulation. As a consequence of the finite tempera-
ture and the limited size of the simulation box, these struc-
tures are, of course, no perfect lattices. These deficiencies
have essentially two origins: on one side, the small, but finite
temperatures make the particles oscillate around their equi-
librium positions; on the other side, the number of particles
might not be compatible with the equilibrium structure that
the system would like to accommodate for a particular state
point in the finite simulation cell. In an effort to provide a
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FIG. 6. Same as Fig. 5 but for D = 3σ and ρσ 3 = 0.25. 3 × 529 particles
have been inserted in a simulation box that was initially quadratic with a
side length of 46 σ ; for this particular state point we obtain 
4 = 0.26 and

6 = 0.80.
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FIG. 7. Same as Fig. 5 but for D = 3σ and ρσ 3 = 0.30. 3 × 529 particles
have been inserted in a simulation box that was initially quadratic with a
side length of 42 σ ; for this particular state point we obtain 
4 = 0.04 and

6 = 0.964.

more quantitative basis for a comparison between simulations
and theory we have evaluated from the simulation data the
bond orientational order parameters, 
4 and 
6, as defined in
Eq. (3) and the in-layer PDF, g(r ), for the three selected state
points specified above. 
4 and 
6 are plotted as functions
of ρ in Fig. 8, keeping D fixed. For 0.12 � ρσ 3 � 0.2 we
find 
4 ∼ 1 (representing the ideal value for the square lat-
tice), which then drops rapidly to zero, as the system assumes
a hexagonal structure. In contrast, 
6 ∼ 0 for 0.25 � ρσ 3,
but then steeply rises to 
6 ∼ 1, indicating that the particles
arrange in a lattice that is close to a hexagonal structure. In-
plane PDFs, g(r ), are depicted in Fig. 9: we show for each
of the three states the g(r )’s, evaluated for each of the three
layers that the system forms. The three PDFs display with
their peak positions in an unambiguous way fingerprints of
the respective, underlying ordered structure; the positions of
the nearest neighbors in the corresponding perfect structures
(as predicted by the GA) are marked by symbols. Further-
more, the data presented in Fig. 9 give evidence that the g(r )’s

0.1 0.15 0.2 0.25 0.3 0.35 0.4

ρσ3
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Ψ

FIG. 8. Orientational bond order parameters, 
4 (�) and 
6 (�), as obtained
from simulations as functions of ρ for a layered system with D = 3σ .
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FIG. 9. In-layer PDFs, g(r ), as functions of r for a layered system with
D = 3σ and ρσ 3 = 0.2, 0.25, and 0.3 (from top to bottom) as obtained
from simulations. Different line symbols correspond to data obtained from
the three different layers that the system forms. Symbols indicate distances
between particles in the corresponding ordered structures as predicted by
theory.

evaluated for the different layers at a given state point coin-
cide within high accuracy, confirming thereby the validity of
our assumption A3 (cf. Sec. II B).

C. The “vertical” transition

The “vertical” (or buckling) transition is considerably
more complex than the “horizontal” one. It occurs as the sys-
tem forms a new layer, as D and/or ρ increase. In a recent
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contribution,35 we have discussed in detail the theoretical pre-
diction for this transition for the particular case that the sys-
tem transforms from a two- to a three-layer system; in the
transition region, the system forms a complex sequence of
(partly collapsing) six layer systems which help to realize
the transition from a two-layer system with hexagonal sym-
metry to a three-layer with square symmetry. Furthermore, a
detailed analysis on the level of the energies of the emerg-
ing structures has revealed that the structures are character-
ized by minute energy differences (cf. Table I in Ref. 35).
We point out that for our system the buckling transition oc-
curs in its most pronounced way at low densities and small
D-values. For high densities and/or large D-values, this struc-
tural change takes place in very narrow intervals of the sys-
tem parameters, making it practically impossible to identify
even with our highly sensitive GA-based optimization tool the
emerging intermediate structures.

In the following we will focus on our simulation-based
investigations of this transition. To be more specific we will
discuss the buckling transition at ρσ 3 = 0.15 as the system
changes from a two- to a three-layer system, which occurs
for 2.65 � D/σ � 3.1. In Fig. 10 we display two simula-
tion snapshots of a layered system at ρσ 3 = 0.15, specified
by D = 2.92σ (upper panel) and D = 3.1σ (lower panel), re-
spectively: for D = 2.92σ we can identify in an unambiguous
way a two-layer system while the lower panel shows a sys-
tem at the buckling transition. In particular, the latter snapshot
provides evidence for the particular difficulties to identify the
complex sequence of structures emerging at the buckling tran-
sition from simulation data. Nevertheless, some more specific
information about this transition can be obtained from the ver-
tical one-particle density profile, ρ(Z ), displayed in Fig. 11
for ρσ 3 = 0.15 for selected D-values. For convenience we
have shifted the origin of the Cartesian coordinate system to
the center of the confined geometry, i.e., Z = z − D/2. ρ(Z )
provides a relatively good insight into the buckling transi-
tion observed in simulations: at D = 2.65σ and D = 2.75σ ,
the system forms well-defined bottom and top layers. As we
increase D, (i.e., to D = 2.87σ and D = 2.92σ ) two small,
symmetric side peaks in ρ(Z ) at Z ∼ 0.7σ give evidence that
two new layers have detached both from the top and the bot-
tom layers, respectively. They correspond exactly to the two

FIG. 10. Simulation snapshot of a layered system (side view) with ρσ 3

= 0.15. Top panel: D = 2.92σ , i.e., shortly before the buckling transition
takes place; bottom panel: D = 3.1σ , i.e., at the buckling transition.
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D/σ = 2.65
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D/σ = 2.87
D/σ = 2.92
D/σ = 2.96
D/σ = 3.00
D/σ = 3.10

FIG. 11. Vertical density profile, ρσ 3(Z ), for a layered system with ρσ 3

= 0.15 as obtained from simulations as a function of Z (cf. text). Different
colors correspond to different D-values as displayed in the inset.

detached layers that have been identified in our theoretical in-
vestigations of the buckling transition, presented in Ref. 35.
Induced by an additional minute change in D, i.e., as D
increases from 2.92 to 2.96σ , these two layers merge, form-
ing thereby an additional third layer located in the center of
the geometry, i.e., at Z = 0.

A more quantitative information can be obtained from the
orientational bond order parameters 
4 and 
6; they are dis-
played as functions of D in Fig. 12, keeping the density fixed
to ρσ 3 = 0.35. Varying D from σ to 5σ we find a rapidly al-
ternating sequence of square lattices (characterized by 
4 ∼ 1
and 
6 ∼ 0) and hexagonal lattices (characterized by 
4 ∼ 0
and 
6 ∼ 1). The small D-ranges, where 
4 drops from 1
to zero and 
6 rises steeply from zero to 1, show consecu-
tive changes from a square to a hexagonal and then again to
a square lattice; from the comparison with the diagram-of-
states (cf. Fig. 1) we find that each time that 
6 → 0 the sys-
tem forms an additional layer. The fact that these D-intervals
are rather narrow in combination with the observation that
the energy differences between the competing structures are

1 2 3 4 5
D/σ

0

0.2

0.4

0.6

0.8

1

Ψ

FIG. 12. Orientational bond order parameters, 
4 (�) and 
6 (�), as ob-
tained from simulations as functions of D for a layered system with ρσ 3

= 0.35.
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very small, makes it practically impossible to identify these
intermediate structures from standard simulation techniques;
however, we point out that highly specialized simulation tech-
niques (such as the lattice switch Monte Carlo method51) are
probably able to cope with this problem.

D. The transition D → ∞
Finally, we have studied the ordered layered structures of

our system in the limit D → ∞, i.e., as we approach the bulk
limit; to be more specific we have investigated this behavior
for wall distances up to D = 100σ . Our investigations were
carried out at a density ρσ 3 = 0.1, for which—according to
the phase diagrams presented in Ref. 41 and 42—the bulk sys-
tem forms an fcc lattice. By analyzing the ordered structures
that the system forms with increasing D, we obtain detailed
information from which stage of the process onward the fcc
structure can be identified.

Before we discuss our results, we point out that the fcc
lattice can be constructed via three, alternative stacking se-
quences of two-dimensional Bravais lattices:

(a) stacking sequence AB AB · · · of a two-dimensional
square-lattice in the 〈100〉 direction and with a lattice
parameter a, which is also the fcc lattice constant. The
layers are displaced by (a/2, a/2, a/

√
2);

(b) stacking sequence AB AB · · · of a two-dimensional rect-
angular lattice in the 〈11′0〉 direction with side lengths
a and a/

√
2; a is the fcc lattice constant. The layers are

displaced by (a/2, a/
√

8, a/
√

8);
(c) stacking sequence ABC ABC · · ·, of a two-dimensional

hexagonal lattice with lattice parameter a; now
√

2a
is the fcc lattice constant. Each layer is displaced by
(a/2, a/

√
12,

√
2/3a).

In our investigations we find that during the entire pro-
cess, i.e., as D grows from small values to 100σ , the system
forms the fcc structure via route (c): at any stage of the pro-
cess the particles arrange in hexagonal two-dimensional lat-
tices and the layers are found to be equally separated between
the walls with hi = D/(nl − 1) = √

2/3a.
The identification of the ordered equilibrium structures

becomes, of course, more difficult as D increases. Note that
for D ∼ 100σ the system forms ∼50 layers, i.e., a layered
equilibrium structure that has to be identified in an approxi-
mately 150-dimensional parameter space.

The lattice sum as a function of D is depicted in
Fig. 13 for D-values up to D = 100σ . From this presenta-
tion it becomes obvious that with increasing D (and thus with
increasing nl ), the lattice sum of the system approaches the
free energy of the fcc bulk phase. The fact that the system
“tends” toward an fcc lattice can easily be traced by the three-
dimensional orientational bond order parameters.52

We would like to point out, that we have observed—
in particular for large D-values—on several occasions, that
stacking sequences such as ABC BC ABC · · · occur; they cor-
respond to hcp-type stacking faults, as they also occur in real-
istic systems. They reflect the fact that the hcp lattice differs
in energy from the fcc lattice only with a small amount.
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FIG. 13. Reduced dimensionless lattice sum U/(Nε) as a function of D at
fixed density ρσ 3 = 0.1 as obtained by GA-based optimization runs, consid-
ering different numbers of layers nl as labeled. The inset displays the range
90 � D/σ � 101, i.e., close to the fcc bulk crystal. The horizontal line dis-
plays the lattice sum of a three-dimensional fcc crystal of the same density.

E. Verification of theoretical assumptions A1, A2, A3

We now return to the three assumptions A1, A2, and A3,
put forward in Sec. II B, and underlying our theoretical inves-
tigations.

In the first assumption A1 we have stated that the inter-
layer regions are essentially void, i.e., particles populate ex-
clusively the layers. The validity of this assumption is fully
confirmed in our computer simulations: let us consider the
state point D = 4σ and ρσ 3 = 0.2, for which our theoretical
approach predicts that the system forms a three-layer system
with a hexagonal in-layer particle arrangement.

As a first initial condition (IC-1) for our simulations we
have inserted 1587 particles at random in the hexagonal box.
The vertical density profile, σ 3ρ(Z ), and the in-layer PDF,
g(r ) are displayed in Figs. 14 and 15. We find that the sys-
tem forms during the simulation run indeed three well-defined
layers, their small spatial extent (∼6%) is a consequence
of the small, but finite temperature that we have chosen for
the simulation. We note that the vertical positions of the
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)

FIG. 14. Vertical density profile, ρσ 3(Z ), for a layered system with D = 4σ

and ρσ 3 = 0.20 as obtained from simulations as a function of Z (cf. text).
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FIG. 15. In-layer PDFs, g(r ), as functions of r for a layered system with
D = 4σ and ρσ 3 = 0.2 as obtained from simulations. Different line sym-
bols correspond to data obtained from the three different layers that the sys-
tem forms. The most general initial condition (IC-1; cf. text) has been used
in the simulation. Symbols indicate distances between particles in the corre-
sponding ordered structures as predicted by theory.

particles are rigorously limited to the interval [0, D], thus par-
ticles in the central layer feel a larger vertical freedom than
the ones in the top and the bottom layer, a fact which is re-
flected in the different widths in the corresponding peaks in
the vertical density profile. Furthermore, counting the num-
ber of particles that populate the three layers, we find that the
respective numbers differ by less than ∼1% (cf. Table I). This
observation validates thus our assumption A2, which stated
that the particle number density in each layer is the same. For
the three in-layer PDFs, g(r ), we find that their peak positions
and their peak heights agree—within numerical accuracy—
nicely, confirming thereby assumption A3, which stated that
the structures within the layers are identical. Similar to the ex-
ample shown in Ref. 35 one can demonstrate also for this par-
ticular state point that the peak positions of the in-layer PDFs
shown in Fig. 15 agree nicely with the inter-particle distances
encountered in the ideal hexagonal lattice (indicated by sym-
bols). In Table I we complement these results by the data for
the orientational bond order parameters, 
4 and 
6. These
results confirm that in all three layers hexagonal lattices are
formed.

As an alternative initial condition (IC-2) for our simu-
lations we have considered three fixed, equally spaced and
equally populated layers in a hexagonal simulation box, i.e.,
504 particles in each layer. Starting from random positions

TABLE I. Number of particles, N , and bond orientational parameters, 
4

and 
6, as obtained from simulations per layer of the state point character-
ized by D = 4σ and ρσ 3 = 0.2. IC-1 and IC-2 refer to the two different
initial conditions used in the simulations (cf. text).

IC-1 IC-2

Layer N 
4 
6 
4 
6

1 522 0.0719 0.9402 0.0808 0.9435
2 536 0.0794 0.9396 0.0782 0.9456
3 529 0.0715 0.9405 0.0808 0.9435

of the particles within the layers, we finally obtain in-layer
PDFs that agree within high accuracy with the ones shown in
Fig. 15. The corresponding orientational bond order parame-
ters are compiled in Table I.

Note that a reliable verification of assumption A3 has al-
ready been presented in this contribution in previous consid-
erations for three additional state points (cf. Fig. 9).

V. CONCLUSIONS AND OUTLOOK

In this contribution we have investigated the ordered lay-
ered structures that a system forms as it grows, layer by layer,
from a two-dimensional lattice to a three-dimensional crystal.
In our system, particles that are confined between two paral-
lel walls of distance D interact via the Gaussian core model,
a commonly used model potential in soft matter systems. On
one side, our investigations were based on optimization tech-
niques inspired by ideas of genetic algorithms, helping to
identify the ordered particle arrangements; for these investi-
gations the temperature was taken to be zero. On the other
side, we have performed complementary Monte Carlo simu-
lations, using—in an effort to avoid any bias—different initial
conditions and adaptive cell geometries; in these simulations
a very small temperature was chosen.

While the number of different, identified lattices is rather
small—essentially we have found the rectangular, the hexag-
onal, the square, and the centered rectangular lattice—it is
the complexity of the structural sequences as the system pa-
rameters vary that make the investigations so interesting. The
resulting diagram-of-states can be well understood by filter-
ing out two transitions: in the first one the number of lay-
ers remains unchanged while in the other the system forms
with increasing system parameters a new, additional layer.
The first transition, being continuous in nature, can easily be
understood using geometric arguments. The other one, termed
buckling transition in literature and being discontinuous, is an
impressive example how the positions of the particles are op-
timized at every instant of the process, guaranteeing thereby
that the energy of the arrangement is minimized.

Our genetic algorithm-based investigations provide evi-
dence that in particular at the buckling transition the compet-
ing structures formed by the system are separated by minute
energy differences. The complementary computer simula-
tions confirm essentially the predicted results; however, and
in particular during the buckling transition, the finite tem-
perature and the limited ensemble size make a precise pre-
diction of the ordered equilibrium structure with standard
simulation techniques rather impossible. The present investi-
gation represents, on one side, yet another impressive demon-
stration of the power of optimization strategies based on
genetic algorithms. These small energetic differences that
characterize competing structures explain why discrepancies
encountered for the different approaches are observed: (i) ex-
perimental and theoretical investigations of these transitions
occur in very narrow D-ranges, thus the identification of the
emerging structures becomes very difficult; (ii) experimental
setups mostly use a wedge geometry; thus a particular ordered
phase at some given thickness D “grows out” of a neigh-
boring ordered phase at a slightly smaller D-value and will
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therefore be strongly influenced by the latter. Thus, an entirely
independent formation of a layered structure for an “isolated”
state point, as we can easily simulate it with the tools used
in this contribution, is not accessible in experiment; (iii) an
accurate identification of the complex transitional structures
is definitely affected by the minute energy differences of the
competing structures; as we have seen in our investigations,
even in relatively large ensembles and assuming adaptive cell
geometries, the formation of “ideal” lattice structures is out
of reach; (iv) since most theoretical concepts are based on ap-
proximate assumptions, it is difficult to estimate the ensuing
consequences for the identification of the structures.

Of course, there is no guarantee that optimization algo-
rithms based on genetic algorithms always find the optimized
particle configuration for a given set of external parameters.
Other successful optimization schemes, such as the basin hop-
ping algorithm53 or metadynamics simulations,54 represent
undoubtedly optimization tools with a comparable success
rate.

The most obvious question that arises is related to the
expected effects of finite temperature. Extending the present
genetic algorithm method to T > 0, the key problem to be
faced is the inclusion of entropy in the thermodynamic poten-
tial. For this particular model the situation is not that hope-
less: reasonable results for the free energy of the Gaussian
core model can be obtained by assuming a mean-field type of
density functional, where the excess contribution to the free
energy functional is given by

F ex[ρ] = 1

2

∫ ∫
drdr′ρ(r)�(|r − r′|)ρ(r′),

ρ(r) is the one particle density profile. This functional is
known to provide reliable information for ultrasoft systems, in
particular for the Gaussian core model.41, 55, 56 Conceptually,
this approach represents a realizable solution to cope with fi-
nite temperatures. However, the model introduces further pa-
rameters in the functional, i.e., the width of the one-particle
density profile, leading thereby to additional parameters that
have to be optimized; thus we risk to pass the computational
limits of the genetic algorithm approach. For other systems, a
reliable evaluation of the entropic contribution to the thermo-
dynamic potential represents, however, a serious problem. Be-
ing approximate in nature, these concepts might introduce an
error to the evaluation of the thermodynamic potential which
is difficult to estimate with unpredictable consequences for
the optimization step. In the end, one is left with a rather un-
clear situation and one can never be sure if this conceptual
error is responsible for predicting a “wrong” structure.

Note added in proof: During the production of this
manuscript, a closely related topic was addressed in Ref. 57.
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