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Using molecular dynamics simulations, we study the slow dynamics of a hard sphere fluid confined in a

disordered porous matrix. The presence of both discontinuous and continuous glass transitions as well as

the complex interplay between single-particle and collective dynamics are well captured by a recent

extension of mode-coupling theory for fluids in porous media. The degree of universality of the mode-

coupling theory predictions for related models of colloids is studied by introducing size disparity between

fluid and matrix particles, as well as softness in the interactions.
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Investigations of the dynamic properties of fluids con-
fined in a disordered porous matrix have recently attracted
considerable attention in the scientific community from
both a fundamental and technological point of view. Of
particular interest is the glass formation process where the
single-particle and the collective dynamics of the fluid are
exposed to the complex interplay between confinement and
connectivity of the pores. While a considerable amount of
experimental results has been compiled in this field [1,2],
theoretical investigations are still rare: remarkable com-
puter simulations on a few selected state points and sys-
tems have been performed [3,4], but systematic studies of
this phenomenon are difficult due to the large computa-
tional cost caused by the requirement of long simulations
and by the thermodynamic averaging prescriptions for
these systems.

A breakthrough in the theoretical investigations was
achieved with the formalism put forward by Krakoviack
[5–7] who successfully combined two concepts to study
the dynamics of fluids confined in disordered porous ma-
trices. On one hand, his framework is based on the replica
Ornstein-Zernike (ROZ) formalism [8], where the system
at hand is viewed as a quenched-annealed (QA) mixture of
mobile fluid particles and immobile matrix particles. The
other ingredient is mode-coupling theory (MCT) [9]: based
on the static correlations of the system, MCT predicts the
time dependence of the single-particle (‘‘self’’) and col-
lective density correlators. MCT has been able to identify
new and unexpected features in the dynamics of colloidal
systems [10–13] and provides a convincing account of the
early stages of the structural arrest in molecular glass-
forming liquids [14].

The results for the kinetic diagram of a simple hard
sphere (HS) fluid in a HS matrix, evaluated using the
MCT framework with ROZ structure factors as an input,
contain indeed a wealth of intriguing features [6,7]. (i) Two
types of glass transitions are encountered: a discontinuous
type B transition at low matrix packing fractions (�m) and
a continuous type A transition at large �m [15]; the two
transition lines meet at a degenerate high order singularity

point (A3). Further, the theory predicts (ii) a reentrant glass
transition for large �m and (iii) a continuous diffusion-
localization transition that occurs only in the self dynam-
ics; the latter transition is driven by the localization of
particles in disconnected void domains formed by the
matrix [7], as in the Lorentz model [16].
This Letter aims in two directions: on one side, we

provide for the first time a parallel study to Krakoviack’s
main theoretical predictions by means of computer simu-
lations for the same HS system. The simulations provide,
in addition, a ‘‘realistic’’ picture of the above dynamic
effects as opposed to the ‘‘idealized’’ view that emerges
from MCT. On the other side, with the help of the ROZþ
MCT framework, we explore the parameter space of two
further types of potentials to find out to which degree the
predicted dynamic features are generic. To this end, we
mimic typical interactions encountered in colloidal sys-
tems by introducing a size disparity between matrix and
fluid particles (establishing thereby a link to the size-
asymmetric mixtures investigated in [17–19]) and softness
in the interparticle interaction.
By means of event-driven molecular dynamics (MD),

we study a QA system of hard spheres in three dimensions
under periodic boundary conditions. As in the monodis-
perse model studied in [6], both matrix and fluid particles
have the same diameter �m ¼ �f ¼ � and mass m. The

total number of particles was N ¼ Nf þ Nm ¼ 1000. In

the following, we use � and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m�2

p
as units of length

and time, respectively [20]. The porous matrix was gen-
erated by quenching an equilibrium fluid configuration at a
packing fraction �m ¼ �=6�m�

3
m. Subsequently, the fluid

component with packing fraction �f ¼ �=6�f�
3
f was in-

serted into the remaining volume using an optimized in-
flation algorithm. For each state point, dynamic properties
were averaged over ten independent realizations of the
system. The fluid component was considered equilibrated
if the total mean squared displacement (MSD) exceeded
102 within a simulation time of 3� 104. State points for
which at least half of the system realizations did not meet
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this criterion were considered glassy. No signs of crystal-
lization were observed. The MCT equations for QA sys-
tems were solved using the numerical procedure outlined
in [6,7]. For the HS system, the connected and blocked
structure factors, used as an input for the MCT equations,
were determined by solving the ROZ equations [8] with the
Percus-Yevick (PY) closure relation. The so-obtained criti-
cal packing fractions and exponents typically agree within
few percent with those reported in [6,7].

In Fig. 1, we show in the (�m, �f) plane the glass and

the diffusion-localization transition lines obtained from
MCT [6,7] together with the dynamic arrest line deter-
mined from simulations. The arrest line interpolates
through points with adjacent equilibrated and glassy state
points. The shape of the arrest line resembles qualitatively
the ideal MCT glass line, but it starts bending downwards
more rapidly for �m * 0:2. Performing simulations on a
fine mesh in�f and�m, we found that the arrest line is not

reentrant at small �f. We will show below that this appar-

ent discrepancy can be rationalized in terms of a crossover
from glass to diffusion-localization transition in the self
dynamics.

To investigate in more detail the different transition
scenarios predicted by MCT, we focus on selected paths
(indicated by arrows and labeled in Fig. 1) across the
(�m, �f) plane. We study both the self part Fsðk; tÞ ¼
1=NhPj expfik � ½rjðtÞ � rjð0Þ�gi and the connected part

Fcðk; tÞ ¼ h��kðtÞ���
kð0Þi=h�kð0Þ��

kð0Þi of the intermedi-
ate scattering function [6], where ��kðtÞ ¼ �kðtÞ � h�ki,
�kðtÞ ¼

P
j exp½ik � rjðtÞ�, and h� � �i indicates a thermal

average. Fcðk; tÞ is the appropriate correlator to character-
ize the slow collective dynamics of fluids in porous media,

since the conventional coherent intermediate scattering
function, Fðk; tÞ, fails to decay to zero at long times due
to matrix-induced average density fluctuations [6].
Figure 2 shows the evolution of the intermediate scat-

tering functions upon increasing �f at fixed �m ¼ 0:05

(path I). The wave vector considered is k ¼ 7:0, close to
the main peak of the fluid-fluid static structure factor. Both
the self and the collective dynamics slow down signifi-
cantly as �f increases towards 0.51, while a plateau at

intermediate t develops in both Fsðk; tÞ and Fcðk; tÞ. These
features are similar to those observed in bulk glass-forming
liquids and are compatible with a ‘‘smeared’’ type B tran-
sition. The difference between the MCT critical packing
fraction,�c

f ¼ 0:439 645, and the glass transition observed

in our simulations amounts to �15%. Similar discrepan-
cies have been reported in investigations on bulk hard
spheres and suspensions of hard colloids [14].
To test the predictions of MCT at a more quantitative

level, we describe the dynamics within the �-relaxation
regime (close to the plateau) using the second-
order asymptotic expansion of the MCT � correlator,
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FIG. 1. Kinetic diagram of the QA HS system: MCT transition
lines (thin lines; from Ref. [7]) and dynamic arrest line from
simulations (thick line; see text for definition). The A3 singular-
ity predicted by MCT is indicated by a solid triangle. Open and
solid circles indicate equilibrated and glassy simulated state
points, respectively.
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FIG. 2. Upper panels: intermediate scattering functions at
�m ¼ 0:05 for different values of �f: (a) connected part Fcðk ¼
7:0; tÞ and (b) self part Fsðk ¼ 7:0; tÞ. Solid lines are fits to the
second-order expansion of the � correlator (see text). Error bars
for selected times represent 1 standard deviation on the average
over matrix realizations. Lower panels: nonergodicity parameter
fðkÞ (symbols) for (c) connected and (d) self correlators at�m ¼
0:05, �f ¼ 0:50. The corresponding nonergodicity parameters

predicted by MCT at �f ¼ 0:446 are included as solid lines.
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fðkÞ þH1ðkÞtb þH2ðkÞt2b [9]. We perform a simulta-
neous fit to all integer wave vectors 1 � k � 20 at the
largest equilibrated packing fraction, �f ¼ 0:50. The re-

sult for k ¼ 7:0 is included in Fig. 2; the exponent b is
0:33� 0:05 for Fsðk; tÞ and 0:36� 0:05 for Fcðk; tÞ. The
range over which the fit can be considered reliable covers
�1:5 decades in time. The estimated uncertainty on b
accounts for the sensitivity of the fit to the choice of the
time range. The fitted values are somewhat smaller than
b ¼ 0:51 (independent of correlators) obtained from nu-
merical solution of the MCT equations, which may be due
to the limited time window available for fitting the simu-
lation data. Further, in the bottom panels of Fig. 2, we show
the nonergodicity parameter fðkÞ for both self and con-
nected correlators. In both cases, fðkÞ compares well with
the MCT predictions at �f ¼ 0:446, i.e., only slightly

above �c
f. Comparisons of similar quality have been re-

ported for bulk glass formers [21,22]. We conclude that
MCT is able to describe at a semiquantitative level the slow
dynamics of the QA system in this portion of the kinetic
diagram.

A more complex scenario appears at large�m, where the
stronger influence of the matrix structure changes the
nature of the transition. In Fig. 3, we show the intermediate
scattering functions for k ¼ 7:0 at constant �m ¼ 0:2
(path II in Fig. 1). Along this path, the relaxation patterns
for self and connected correlators differ markedly as �f is

varied. The relaxation of Fcðk; tÞ becomes slower as �f

increases. Contrary to the case of dilute matrices, however,
there is no finite-height plateau at intermediate times. This
indicates the approach to a continuous type A glass tran-
sition, consistent with MCT predictions along path II. On
the other hand, the decay of Fsðk; tÞ occurs in two steps,

with a first inflection (1< t < 10) and a subsequent
stretched decay at long times to a finite plateau. Upon
increasing �f, the plateau rises continuously starting

from values close to 0, as one expects in a type A transition.
These features of Fsðk; tÞ are consistent with those pre-
dicted by MCT across the continuous diffusion-
localization transition (dotted line in Fig. 1).
The cascade of decays in Fsðk; tÞ hence arises from the

interplay between two dynamic effects: a weak, collective
mechanism of caging by fluid particles and an effective
trapping in the voids left by the matrix particles. The
superposition of glass and diffusion-localization transi-
tions leads to an effective ‘‘decoupling’’ between self and
collective dynamics. In fact, at the largest equilibrated �f

along path II (�f ¼ 0:22), the ratio �sðkÞ=�cðkÞ of the

relaxation times, defined via the decay to 0.1 of the corre-
sponding correlators, is already larger than 102 for k ¼ 7:0.
As a result, the dynamic arrest line (see Fig. 1) bends
downwards rapidly in the large-�m, small-�f part of the

diagram, following the trend of the diffusion-localization
line. Further work is required to assess whether the pre-
dicted reentrance of the glass line exists or if it is hindered
by the progressive arrest of the self dynamics.
According to MCT, the stretched decay of self correla-

tors for large t close to the diffusion-localization line is
associated with a subdiffusive behavior in the MSD �r2ðtÞ
[7]. In Fig. 4, we show the evolution of the MSD at
constant �f ¼ 0:10 (path III in Fig. 1). Note that upon

increasing�m along this path, the slowing down of the self
dynamics is dictated by the diffusion-localization transi-
tion. For �m & 0:15, the ballistic regime �r2ðtÞ 	 t2 is
followed by normal diffusion �r2ðtÞ 	 t. However, for
�m * 0:15, the system becomes subdiffusive, i.e.,
�r2ðtÞ 	 tz with z < 1, over an intermediate time window
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FIG. 3. Intermediate scattering functions at �m ¼ 0:20 for
different values of �f: (a) connected part Fcðk ¼ 7:0; tÞ and

(b) self part Fsðk ¼ 7:0; tÞ. Error bars as in Fig. 2. Inset of
(b): enlarged view of the plateau of Fsðk ¼ 7:0; tÞ at long times.
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FIG. 4. MSD at constant �f ¼ 0:1 for �m ¼ 0:05, 0.10, 0.15,
0.20, 0.225, 0.25, and 0.275 (from left to right). Solid lines are
fits to �r2ðtÞ 	 tz in the subdiffusive regime. Error bars as in
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that becomes broader as �m increases. As in the Lorentz
model [16], z decreases as �m increases. Up to a ��

m �
0:25, normal diffusion is eventually recovered at longer
times, while for larger�m the MSD tends to saturate. Close
to ��

m, the subdiffusion exponent is z � 0:51, in striking
agreement with the MCT prediction along the diffusion-
localization line (z ¼ 0:5 [7]). Remarkably, we also find
that z is nearly independent of �f at fixed �m (see inset of

Fig. 4). Hence, even at finite �f, the diffusion-localization

transition is intimately related to the geometrical properties
of the matrix.

To assess the degree of universality of the scenario
predicted by the ROZþMCT formalism, we solved the
MCT equations for related QA systems based on purely
repulsive interactions. Specifically, we considered additive
hard spheres with size ratio � ¼ �m=�f � 1 and soft

spheres interacting with inverse power potentials uðrÞ ¼
	ð�=rÞn where 6 � n � 12. In the latter case, we used � ¼
1 and the structure factors were calculated at a temperature
T=	 ¼ 0:2 by solving the ROZ equations in combination
with the hypernetted-chain approximation [23]. In Fig. 5,
we show results for selected values of � and n. The
topology of the MCT kinetic diagrams of the studied
systems is very similar to the one shown in Fig. 1, but
subtle differences are observed as system parameters vary.
As � decreases in the HS systems, the glass line shifts to
smaller �m and the crossing point between type B and A
transitions moves towards the turning point of the glass
line. On the other hand, in the soft sphere systems the glass
line shifts to larger�f as n decreases (as expected), and the

diffusion-localization line becomes clearly reentrant. We
plan to investigate these features in more detail in future
work.

In conclusion, we revealed the existence of a subtle
interplay between self and collective dynamics in a QA
model of fluid in porous confinement. The MCT frame-
work for QA systems [5–7] provides idealized but consis-

tent guidelines to explain the dynamic features apparent for
both dilute and dense matrices. This includes the superpo-
sition of glass transitions, driven by a collective caging
mechanism, and diffusion-localization transitions, associ-
ated with the ceasing percolation of voids in the matrix
structure. The predicted features should be generic for a
broad class of model colloidal fluids adsorbed in porous
media, and should be observed experimentally in colloidal
suspensions confined in porous matrix configurations,
quenched, for instance, by optical tweezers.
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Note added.—While finalizing this Letter, we became

aware of a recent paper by Kim et al. [24], which focuses
on a related model. Their results for the HS QA system are
consistent with the analysis presented here.
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FIG. 5. MCT kinetic diagram for (a) QA hard spheres with size
ratio � ¼ 0:5, 1.0, and 2.0 (from left to right) and (b) QA soft
spheres with � ¼ 1:0 and repulsive exponent n ¼ 6, 7, and 10
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