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Abstract
We report molecular dynamics simulations for a new model of tetrahedral network
glass-former, based on short-range spherical potentials. Despite the simplicity of the forcefield
employed, our model reproduces some essential physical properties of silica, an archetypal
network-forming material. Structural and dynamical properties, including dynamic
heterogeneities and the nature of local rearrangements, are investigated in detail and a direct
comparison with models of close-packed, fragile glass-formers is performed. The outcome of
this comparison is rationalized in terms of the properties of the potential energy surface,
focusing on the unstable modes of the stationary points. Our results indicate that the weak
degree of dynamic heterogeneity observed in network glass-formers may be attributed to an
excess of localized unstable modes, associated with elementary dynamical events such as bond
breaking and reformation. In contrast, the more fragile Lennard-Jones mixtures are
characterized by a larger fraction of extended unstable modes, which lead to a more cooperative
and heterogeneous dynamics.
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1. Introduction

Network-forming amorphous materials are of great interest
for technological applications, as well as of fundamental
importance for the theoretical understanding of the glass
transition. At a microscopic scale, the structure of network
glass-formers, in both the amorphous and highly viscous
regimes, is characterized by strong chemical ordering and
atomic arrangements that usually form an open tetrahedral
network. Upon cooling from high temperature, transport
coefficients and structural relaxation times τ of network liquids
display a mild temperature dependence, often describable by
the Arrhenius law τ ≈ τ∞ exp(E/T ). Network glass-formers
are thus ‘strong’ in Angell’s classification scheme [1]. In

contrast, other classes of glass-formers, including molecular,
polymeric and bulk metallic liquids, show super-Arrhenius
temperature dependence of τ , i.e. ‘fragile’ behaviour.

Ever since the introduction of Angell’s classification, the
nature of the distinction between fragile and strong liquids has
been highly debated. While the degree of fragility of a liquid
correlates quantitatively with other macroscopic physical
properties, the existence of qualitative differences between
strong and fragile systems has been questioned. Evidence of a
‘fragile-to-strong’ crossover in a simulated network liquid [2]
and numerical investigations of dynamic heterogeneities in
model glass-formers [3] suggest that network liquids may just
be an extreme case of the class of fragile systems [4]. In
contrast, theoretical work on kinetically constrained models
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of glassy dynamics [5] indicates that strong behaviour may
arise from the different nature of dynamical constraints.
Moreover, the energy landscape description of supercooled
liquids [6, 7] shows that the organization and connectivity of
stationary points in the potential energy surface (PES) may be
qualitatively different in fragile and strong glass-formers. In
this two latter scenarios, fragile and strong liquids would thus
belong to different ‘universality classes’ of glass-formers.

Silica is often considered as a prototypical network glass-
former. In recent years, several authors have studied structural
and dynamical properties of this system through numerical
simulations, employing both molecular dynamics (MD) and
Monte Carlo techniques. One of the most realistic and popular
models of silica available for molecular simulations is the BKS
model introduced by Van Beest et al [8]. In this model, the
interaction between Si and O atoms is described by a long-
ranged Coulombic interaction, plus a short-range repulsion
of the Born–Mayer type. Various physical aspects of the
supercooled and glassy regimes of the BKS model have been
analysed, including the phase diagram [9, 10], structural [11],
dynamical [12, 13, 3, 4] and vibrational [14–16] properties.
Investigations of the energy landscape of the BKS model have
also been performed [17–20]. Because of the long-ranged
nature of the interactions, however, simulations using the BKS
model are computationally demanding. Hence, development
of simpler forcefields, capturing the basic features of network
liquids, is highly desirable. Recently, in fact, simplified
models for silica have been proposed, including short-ranged
variants of the original BKS potential [21, 22] and primitive
models based on patchy interactions [23, 24]. Other models
of tetrahedral network liquids (not directly related to silica)
based on spherical, patchy interactions have also been studied
recently [25] and in the past [26].

In this work, we present a new model of network glass-
former, based on spherical short-ranged potentials. Our model
allows efficient simulations and can be tuned to reproduce
some relevant properties of amorphous silica. It does not
aim at a realistic description of liquid and amorphous silica,
yet it captures to a good extent the essential physics of
network glass-formers. Moreover, being able to describe
both network and ‘simple’ glass-forming liquids [27, 28]
with similar efficiency via the same family of interactions,
we can get an unusually detailed and systematic comparison
between the microscopic origins of their structural relaxation.
In particular, we trace back the distinct dynamic features of
network glass-formers (e.g. strong behaviour, weak dynamic
heterogeneity, bond breaking and reformation processes) to
the properties of the PES, contrasting our findings with the
case of the more fragile, close-packed Lennard-Jones (LJ)
mixtures [27, 28]. Our results emphasize the role of the
unstable modes of the PES as a key to rationalize the different
dynamic behaviours of glass-forming liquids.

This paper is organized as follows: in section 2 we
introduce our model of network glass-formers; in section 3
we describe its structural and dynamical properties, while in
section 4 we analyse the properties of the stationary points of
the PES, focusing on the unstable modes. Finally, in section 5
we draw our conclusions.

2. Model

Our model of a network glass-former, called NTW herein, is
a binary mixture of classical particles interacting through the
following forcefield:

uαα(r) = 4εαα

(
σαα

r

)12

(1)

uαβ(r) = 4εαβ

[(
σαβ

r

)12

−
(
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r
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α �= β (2)

where α, β = 1, 2 are indexes of species. In the following, we

will use σ11, ε11 and
√

m1σ
2
11/ε11 as reduced units of distance,

energy and time, respectively. Keeping an eye on silica, we
identify large particles (species 1) with Si atoms and small
particles (species 2) with O atoms, and we fix the number
concentrations at x1 = 0.33, x2 = 0.67. We also use the
same mass ratio of O and Si atoms: m2/m1 = 0.57. A
smooth cutoff scheme is used to ensure continuity of uαβ(r)

at r = 2.2σαβ up to the second derivative [29]. The size
of the samples considered in this work is N = N1 + N2 =
500. The presence of finite-size effects have been checked
through simulations of larger systems (N = 2048, 8000) and
will be briefly discussed in section 3. We performed MD
simulations in the NVE ensemble using quenching protocols
and equilibration criteria similar to the ones of previous
simulations of LJ mixtures [27, 28]. Equilibration and
production runs were performed using Berendsen rescaling
and the velocity-Verlet algorithm, respectively. The time
step δt was varied between 0.001 (at high T ) and 0.004 (at
low T ). The absence of major systematic ageing effects
was checked by comparing thermodynamic, structural and
dynamical properties in different parts of the production runs.
At the lowest temperatures, simulations involved up to 3.5 ×
107 and 7×107 steps for the equilibration and production runs,
respectively. Thanks to the short range of the potentials and to
the open local structure of the system, these long runs took a
few days on a 3.4 GHz Xeon processor.

To reproduce the open, tetrahedral local structure of
network glasses, two main physical ingredients must enter in
the forcefield of our model: highly non-additive interaction
radii and strong attraction between unlike species. Building on
previous experience [26], we determined the following optimal
set of interaction parameters:

σ12/σ11 = 0.49 σ22/σ11 = 0.85

ε12/ε11 = 6.00 ε22/ε11 = 1.00.

To optimize the parameters above, we performed a series of
preliminary simulations at reduced density ρ = ρexpt ≈ 1.53,
which corresponds to the density of amorphous silica in normal
experimental conditions. The parameters were adjusted by
requiring that the ratio between the positions of the first peaks
in g12(r) and g11(r) was equal to that of Si–O and Si–Si
interatomic distances of amorphous silica. We also checked
that at low temperature the average coordination numbers,
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Figure 1. Partial pair correlation functions gαβ(r) for the NTW
model (solid lines) and the BKS model for silica (open points). The
thermodynamic state shown for BKS silica is ρ = 2.37 g Å

−3
,

T = 2750 K and the one of NTW is ρ = 1.655, T = 0.39 in reduced
units. The BKS data refer to the MD simulations by Horbach and
Kob [30].

obtained from the integral of the radial distribution functions,
were close to the ideal tetrahedral ones, i.e. Z12 = 4, Z21 = 2.

The physical units of our model can be fixed to reproduce
some relevant properties of experimental and realistic models
of silica, such as the BKS model. We fixed the length scale
σ11 so that the position of the first peak of g11(r) matched the
mean Si–Si distance (i.e. 3.12 Å) of amorphous silica. In this
way we obtained σ11 = 2.84 Å. To fix the energy scale ε11, we
compared the shape of the radial distribution functions gαβ(r)

to the ones obtained by Horbach and Kob [30] for BKS silica
at the state point ρ = 2.37 g Å

−3
, T = 2750 K (see figure 1).

The corresponding density in reduced units is ρ = 1.655. A
good overall agreement of the liquid structure is found around
T = 0.39, from which we estimate ε11 ≈ 7000 K. Finally,
we fixed the timescale of our model by adjusting the mass
scale m1 so as to reproduce typical vibrational frequencies
of amorphous silica. Following previous studies (see, for
instance, [14–16]), we determined the vibrational density
of states (VDOS) through diagonalization of the dynamical
matrix calculated at local minima of the potential energy at
ρ = 1.53, T = 0.30. The choice m1 = 8.7 × 10−23 g ≈
1.9mSi yields reasonable agreement between the VDOS of our
model and the experimental VDOS of amorphous silica [31]

Figure 2. Vibrational density of states (VDOS) obtained from local
minima of the potential energy at ρ = 1.53, T = 0.30 for the NTW
model (solid line), compared to experimental VDOS of amorphous
silica (filled points, from [31]). The experimental data are convoluted
with a correction function that alters their features only
quantitatively [16].

(see figure 2, which is further discussed in section 3). From
the value of m1 given above we obtain the time unit t0 =√

m1σ
2
11/ε11 = 2.0 × 10−13 s.

3. Structure and dynamics

In this section we further validate our model by analysing its
structural and dynamical properties. Our simulations spanned
a wide range of densities: 1.250 � ρ � 2.300. At higher
density (ρ = 2.800) we found clear signs of crystallization
of our samples, but we did not attempt to determine the
crystallographic structure. At lower densities (ρ � 1.250)
large voids are formed in the network structure and liquid–
gas phase separation might occur. In the following, we will
mostly focus on the isochore ρ = 1.655, which corresponds to
the density employed in several simulations of BKS silica, at
temperatures in the range 0.29 � T � 1.50.

3.1. Structure and vibrations

The fact that the radial distribution functions of our model
agree rather well with those of the more realistic BKS
model (see figure 1) and the overall qualitative shape of the
VDOS (see figure 2) already suggest that the NTW model
should capture some relevant physical aspects of network
glass-formers, at least for densities and temperatures where
tetrahedral local ordering is more pronounced. In this section
we study in more detail the structural and vibrational properties
of our model.

In figure 3 we show the partial structure factors Sαβ(k)

obtained at the lowest temperature attained in equilibrium
conditions for ρ = 1.655. The pre-peak (also called the first
sharp diffraction peak) at k ≈ 5.0 in S11(k) and S22(k) signals
the formation of intermediate range order. This is a typical
feature apparent at low temperature in network liquids. The
positions of the pre-peak and main peak (k ≈ 8.0) in S11(k) are
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Figure 3. Partial structure factors S11(k) (solid line), S12(k) (dashed
line) and S22(k) (dotted line) at ρ = 1.655 and T = 0.29.

in good agreement with those of SSiSi(k) in amorphous silica
and simulated BKS silica [12].

Further insight into the structural properties of the NTW
model is provided by the distribution fαβγ (θ) of angles
formed by a central particle of species β with neighbours
of species α and γ , where α, β, γ = 1, 2. Particles of
species α and γ are considered neighbours if their distance
is less than the minimum of the radial distribution function
at the corresponding T . The normalized angular distribution
functions f121(θ) and f212(θ), shown in figure 4 for a few
selected temperatures, reveal the typical features associated
with local tetrahedral ordering. The broad peak in f212(θ),
located around θ = 108◦, reflects the presence of slightly
distorted tetrahedra centred around particles of species 1. The
f121(θ) shows a peak around 180◦, which corresponds to the
links formed by particles of species 2 connecting adjacent
tetrahedra. Note that the peak positions and the overall shape
of these distribution functions change only mildly below T ≈
0.50. Thus, below this temperature, which we will identify in
section 3.2 as the onset temperature of slow dynamics [32],
the NTW model displays a strong degree of tetrahedral local
ordering.

The angular distribution functions f111(θ) and f222(θ)

(see two lower plots in figure 4) provide information about
the intermediate range order of our model. The f111(θ)

displays a broad peak located at θ ≈ 105◦, associated with
distorted corner-sharing tetrahedra. The smaller peak around
60◦, due to threefold rings [33], decreases in height upon
lowering the temperature. At higher density (ρ = 2.300, not
shown here) this small peak increases in intensity (at fixed
T ), while the peak at θ ≈ 105◦ splits into two sub-peaks.
Similar variations upon compression were found in the angular
distribution functions of a more realistic model of silica [33].
Hence, we conclude that our simple model is able to capture
some non-trivial structural features of network glass-formers.

To highlight the formation of a nearly ideal tetrahedral
network at low T , we show in figure 5 the T dependence
of the fraction of particles with ideal coordination numbers,
i.e. P(Z12 = 4) and P(Z21 = 2) for particles of species
1 and 2, respectively. To identify neighbouring particles

Figure 4. Angular distribution functions fαβγ (θ) for T = 0.80
(dotted lines), 0.48 (dash–dotted lines), 0.36 (dashed lines) and 0.29
(solid lines) at density ρ = 1.655.

we used the same criterion as for the angular distribution
functions discussed above. The fraction of ideally coordinated
particles is already substantial around T ≈ 0.5 [P(Z12 =
4), P(Z21 = 2) > 0.70] and approaches unity at low T .
This provides further indication that for the density considered
here the system is indeed in the optimal region of network
formation [25].

A closer inspection of figure 2 shows that the VDOS
of the NTW model reproduces all the qualitative features of
the experimental VDOS of amorphous silica. The relative
positions of the peaks in the VDOS of NTW match well
enough those of the experimental VDOS. Note that the absence
of a peak at small frequencies (ω ≈ 4 THz) in the experimental
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Figure 5. Fraction of particles with ideal tetrahedral coordination as
a function of 1/T : P(Z12 = 4) (empty circles) and P(Z21 = 2)
(filled circles) are shown for particles of species 1 and 2, respectively.
The vertical dotted line marks the onset of the slow-dynamics
regime.

data is due to insufficient experimental resolution [16, 34].
A careful comparison of simulated and experimental VDOS
of silica can be found in [16]. Here we only recall that
the VDOS of the BKS model is somewhat unrealistic at low
and intermediate frequencies [16]. Similar deficiencies have
also been found in recent modifications of the original BKS
model employing short-ranged potentials [22]. Specifically,
the distinct peaks at 12 and 24 THz, as well as the small peak
around 18 THz (D2 line), are missing in the VDOS of BKS
silica. Given the simplicity of the forcefield employed, the
success of the NTW model in reproducing the main qualitative
vibrational features of amorphous silica is rather remarkable.

3.2. Relaxation dynamics

Our first step in the description of the dynamical properties of
the NTW model consists in the identification of the so-called
‘slow-dynamics regime’ [32]. In this temperature regime,
the dynamical properties of glass-forming liquids assume all
their distinct features, including two-step relaxation, dynamic
heterogeneities, etc. To detect the onset of slow dynamics,
we study the variation with temperature of the incoherent
intermediate scattering functions:

Fα
s (k, t) = 1

Nα

Nα∑
i=1

〈exp{ik · [r i(t) − r i (0)]}〉 (3)

where α = 1, 2 is an index of species. The t dependence of
F1

s (k, t) is shown in figure 6 for temperatures in the range
0.29 � T � 1.50 at two different wavenumbers: k = 5.0,
close to the pre-peak in the static structure factors (upper panel)
and k = 8.0 (lower panel). Two-step relaxation develops
around TO ≈ 0.50, which we take as the onset temperature
of the slow-dynamics regime. Distinct damped oscillations are
observed in Fα

s (k, t) on the timescale of the early β relaxation,
i.e. on approaching the plateau. In larger samples (not shown
here), the amplitude of these oscillations is slightly smaller—a
well-known finite-size effect in model network liquids [30, 35].

Figure 6. Intermediate scattering functions Fs(k, t) (self-part) at
ρ = 1.655 for wavevector k = 5.0 (top panel) and k = 8.0 (bottom
panel).

We now analyse the T dependence of the structural
relaxation times extracted from the intermediate scattering
functions. Wavenumber-dependent relaxation times, τα(k), for
species α are defined by the condition Fα

s (k, τα(k)) = 1/e.
In the Angell plot in figure 7 we focus on the T dependence
of τ1. We focus here on the case τ ≡ τ1 (k = 5.0). To fit
the T dependence of the relaxation times we use the following
modified Vogel–Fulcher equation, previously employed in our
study of LJ mixtures [27]:

τ (T ) =
{

τ∞ exp[E∞/T ] T > T ∗

τ ′
∞ exp

[
1

K (T/T0−1)

]
T < T ∗ (4)

where
τ ′
∞ = τ∞ exp

[
E∞/T ∗ − 1

K (T ∗/T0−1)

]
. (5)

Equation (4) describes the crossover from Arrhenius to
Vogel–Fulcher T dependence of τ , ensuring continuity at T =
T ∗. Its use in the case of a network glass-former is justified
by the observation that network liquids display a mild super-
Arrhenius behaviour around and slightly below TO. As we
can see from figure 7, equation (4) fits rather well τ (T ) over
about five decades. Note that the degree of super-Arrhenius
behaviour in τ (T ) is indeed rather modest and more visible at
wavenumbers corresponding to the first sharp diffraction peak
(k = 5.0).

Also included in figure 7 are the partial diffusion
coefficients D1(T ) obtained from the usual Einstein relation.
To describe the T dependence of the diffusion coefficients, we
simply used the Arrhenius law, Dα = Dα∞ exp(Eα/T ). By
fitting the data at low temperature (T < 0.4), we obtain activa-
tion energies E1 = 6.3 ≈ 3.8 eV and E2 = 5.9 ≈ 3.6 eV,
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Figure 7. Top panel: Angell plot for structural relaxation times
τ1(k = 5.0) (filled squares), τ1(k = 8.0) (stars) and inverse diffusion
coefficients 1/D1 (empty squares). All quantities refer to particles of
species 1. The modified VFT fit for τ1(k = 5.0) (equation (4)) and
the Arrhenius fit for 1/D1 are also shown as solid lines. The dotted
vertical line marks the onset of the slow-dynamics regime. Lower
panel: ratios τ1(k = 5.0)/τ2(k = 5.0) (filled squares) and D2/D1

(empty squares) as a function of 1/T .

which are in reasonable agreement with those obtained
in the case of BKS silica for silicon and oxygen atoms,
respectively [30]. The difference in the diffusion coefficients
between the two species is analysed in the lower panel of
figure 7, where the ratio D1/D2 is shown as a function of
1/T . This ratio becomes ∼2 at the lowest temperatures. A
smaller separation of timescales is found when inspecting the
ratio τ2/τ1.

The fragility index K of the NTW model obtained from
fits to equation (4) is shown in figure 8 as a function of
ρ. The system is slightly stronger (smaller K ) at densities
close to the experimental density of silica. In this range of
density (1.5 < ρ < 1.8), tetrahedral local order becomes
nearly ideal at low T . Hence, our results provide support
for the link between structure and dynamic behaviour in
network liquids demonstrated in [24] for patchy colloidal
particles. Interestingly, the fragility of the NTW model seems
to increase outside the density range mentioned above both at
high and low density. Further investigations at low density
would be required to clarify the nature of this behaviour and
its possible connection with a reversibility window [36, 37],
whose existence for silica has been suggested by recent
work [38].

Figure 8. Fragility index K obtained for the NTW model and two
representative LJ mixtures as a function of ρ (NTW, lower axis) and
P (LJ, upper axis).

The use of a common functional form to describe τ =
τ (T ) of the NTW and LJ models allows a direct comparison
of their Angell fragility. To this end, we also included in
figure 8 the values of K obtained in [27] for the mixture of
Kob and Andersen (BMLJ [39]) and the mixture of Wahnström
(WAHN [40]). Clearly, both LJ mixtures have larger fragility
indexes. Furthermore, the fragility index of NTW, K = 0.09,
obtained at ρ = 1.655 is lower by around a factor of three
than the lowest values found for LJ mixtures (K = 0.24 for
AMLJ-0.60 [27]). The fact that the fragility index was obtained
at constant density for the NTW and constant pressure for
the LJ mixtures does not affect substantially our conclusions.
Moreover, even when considering the variation of K with ρ,
the largest fragility index of the NTW model (K = 0.20 at
ρ = 2.300) is comparable to the lowest ones found in LJ
mixtures [27]. Thus, despite the presence of super-Arrhenius
behaviour around the onset of slow dynamics, our network
glass-former is stronger than all LJ mixtures studied in [27], a
fact which fits naturally into the Angell classification scheme.
Moreover, our analysis does not exclude the occurrence, at
low temperatures, of a fragile-to-strong transition—a scenario
which has recently found support on the basis of an energy
landscape approach [20].

3.3. Dynamic heterogeneity

Figure 8 shows that NTW, BMLJ and WAHN may be
considered as models of strong, intermediate and fragile glass-
formers, respectively. This offers the opportunity to investigate
the main trends of variations of the dynamics in liquids with
different fragility. In this section, we focus on the degree of
dynamic heterogeneity of the above-mentioned models.

As a simple measure of the degree of heterogeneity of the
dynamics we will use the non-Gaussian parameter

α2(t) = 3〈r 4(t)〉
5〈r 2(t)〉2 − 1 (6)
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Figure 9. Non-Gaussian parameter α2(t) for particles of species 1
along isochoric quenches for NTW at ρ = 1.655 (top), BMLJ at
ρ = 1.2 (middle) and WAHN at ρ = 1.297 (bottom).

which measures the deviation of the distribution of particles’
displacements r(t) from a Gaussian distribution. Upon cooling
the liquid below TO, in fact, the distribution of particles’
displacements deviates progressively from a Gaussian and
the amplitude of α2 increases. Within the late β-relaxation
timescale, the non-Gaussian parameter of typical glass-
forming liquids displays a broad peak, whose position t∗ and
height α∗ increase by decreasing temperature. The trends of
variation of the maximum of the non-Gaussian parameter α∗

2
have been found to follow qualitatively the behaviour of more
refined dynamic indicators [3], such as those obtained from
four-point correlation functions [41, 42].

We computed the non-Gaussian parameter α2(t) in
equation (6) separately for species 1 and 2. The results
obtained for NTW, BMLJ and WAHN models along isochoric
quenches are shown in figures 9 and 10 for species 1 and
2, respectively. The degree of dynamic heterogeneity, as
measured from the height α∗

2 of the peak, is least pronounced
in the case of the NTW model close to the ideal density
for tetrahedral network structure. This is consistent with the
analysis of Vogel et al [3], who found in fact that BKS silica

Figure 10. Same as figure 9 but for particles of species 2.

had a lower degree of dynamic heterogeneity than other simple
glass-formers, including the BMLJ model. Our results thus
indicate a broad correlation between fragility and the degree of
dynamic heterogeneity in glass-forming liquids. In particular,
within the slow-dynamics regime, both the local structure and
the local dynamics appear more homogeneous in network than
in close-packed glass-formers.

3.4. Local rearrangements

We now turn to a closer inspection of the nature of local
rearrangements in our model network glass-former. In
particular, we want to identify the structural modifications
that accompany relaxation events. This is motivated by the
current interest in investigating the link between structure and
dynamics in glass-forming liquids [43, 44]. We will contrast
the results for the NTW model to those previously obtained for
LJ systems [45, 27, 28].

In a first attempt to characterize the local dynamics of
the NTW model and to establish a connection with its local
structural properties, we computed the ‘propensity of motion’
of particles, according to the definition of Widmer-Cooper et al
[43]. In this approach, time-dependent atomic displacements
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Figure 11. Snapshots of particles having large propensity of motion 〈�r(t)〉ic for t = 200 (a) and t = 1000 ≈ t∗ (b). For both times, the 30%
most mobile particles of either species are shown as large dark spheres, irrespective of chemical species. The remaining particles are shown as
small light spheres.

�r(t), relative to a reference configuration, are averaged
over several trajectories generated by independent initial sets
of velocities (‘iso-configurational ensemble’). The resulting
spatial distribution of average displacements 〈�r(t)〉ic, where
〈· · ·〉ic denotes an average in the iso-configurational ensemble,
is thus strictly associated with the initial configuration, and can
be used, in principle, to identify the local structural features
responsible for relaxation events.

The spatial distribution of the particles with large
propensity of motion for a representative configuration
sampled at T = 0.31 is shown in figure 11 for t = 200 < t∗
(left panel) and for t = 1000 ≈ t∗ (right panel). Mobile
particles, depicted in figure 11 as large dark spheres, are
identified as the ones having the 30% largest propensities of
motion among those of the same chemical species. The overall
picture does not change upon small variation of the fraction of
particles displayed. There is no substantial clustering of mobile
particles on either timescales. Some clustering is observed at
t = 1000 but the size of the clusters remains rather modest
(less than ∼10 neighbouring particles). This is strikingly
different from the results obtained in LJ systems [45] within the
slow-dynamics regime. In LJ systems, a pronounced clustering
of particles with large propensity of motion has been observed
for times of the order of the late β relaxation (t ≈ t∗). Our
results confirm that the degree of dynamic heterogeneity of
network liquids is much less pronounced than in close-packed
LJ systems, and show that the origin of the weak dynamic
heterogeneity observed within the α-relaxation timescale is
essentially kinetic, rather than structural.

The results above do not imply, however, that there is no
link at all between local structure and dynamics in network
liquids. Such a link is more subtle and requires a different
type of investigation. The breaking and reformation of bonds
involved in typical relaxation events [30] occurs, in fact, on
a very short timescale and the averaging introduced by the
iso-configurational ensemble washes out this information. To
overcome this problem we calculated, following Ladadwa and
Teichler [46], the instantaneous mobility of particles from a

smoothed atomic trajectory:

r̄ i(t) =
∫ ∞

−∞
r i(t

′)φ(t ′, t) dt ′ (7)

where φ(t ′, t) is a smoothing function normalized to 1. Rather
than a Gaussian [46], we used a simple window smoothing
function of length 2�t , which equals 1/(2�t) for t − �t <

t ′ < t − �t and 0 otherwise. From the smoothed trajectories,
we computed the instantaneous atomic mobility [46]:

μi(t)
2 =

∫ ∞

−∞
[r̄ i (t) − r̄ i (t

′)]2φ(t ′, t) dt ′

= 1

2�t

∫ t+�t

t−�t
[r̄ i(t) − r̄ i(t

′)]2 dt ′

using �t = 10. The time dependence of μi(t) is shown
in figure 12 for representative particles of species 1 and 2
at T = 0.29. At this low temperature, atomic mobilities
show intermittent behaviour, with long periods of inactivity
(vibrations) followed by displacements occurring on a very
short timescale. To establish the connection with the changes
in the local structure, we also plot, for the same time
interval, the instantaneous coordination number Z(t). A
clear correlation between intermittent dynamical events and
bond breaking and reformation processes is observed. In
particular, defective local environments (Z12 �= 4 and Z21 �=
2), either created instantaneously by thermal fluctuations or
associated with long-lived defective configurations, are closely
associated to dynamical events. Interestingly, this shows that
in network liquids the link between structure and dynamics can
be understood at a single-particle level. Such a link has been
demonstrated in LJ systems only at a coarse-grained spatial
level [47].

Finally, we describe qualitatively the typical local rear-
rangements observed at low temperature in the NTW model.
By inspection of animated atomic trajectories, we identified
two typical relaxation processes, closely related to the ones
occurring in BKS silica. See figure 13 and supplementary
materials (available at stacks.iop.org/JPhysCM/21/285107) for
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Figure 12. Instantaneous mobility μi(t) in arbitrary units (dashed
line) for two representative particles of species 1 (two upper panels)
and species 2 (two lower panels) at T = 0.29. Also shown are the
instantaneous coordination numbers Z12(t) and Z21(t) for particles
of species 1 and 2, respectively (solid lines).

two representative events. A first class of rearrangements
involves correlated rotations of tetrahedra formed by small
particles around nearly immobile large particles. The overall
process resembles the ‘rotational period’ recently described
by Heuer and co-workers [49], in which oxygens perform
permutation of the tetrahedral positions around a fixed silicon
atom. A second class of rearrangements is closely related to the
ones described by Horbach and Kob [30]. One large particle
jumps out from one of the faces of the tetrahedron surrounding
it and attaches itself to an under-coordinated (Z21 = 1)
small particle. At the same time, a slight recoil movement
of the small particles forming the involved tetrahedron is
observed, together with the formation of a new dangling bond.
Contrary to rotational rearrangements, which often involve a
few neighbouring tetrahedra, this second class of elementary
dynamical events is strongly localized around the involved
tetrahedron. On longer timescales, however, sequences of
independent events are also observed (see the right panel of
figure 13).

4. Stationary points and unstable modes

Summarizing our previous analysis, two key features
characterize the dynamical behaviour of our model network
liquid: strong behaviour in Angell’s classification scheme and
a significant homogeneity of atomic displacements within the
late β-relaxation timescale. In this section, we rationalize
these features in terms of the properties of the potential energy
surface (PES). In particular, we first provide an estimate of
the average energy barriers in the PES of the NTW model and
then analyse the localization properties and real-space structure
of the unstable modes associated with stationary points of the
PES.

4.1. Energy barriers

The nature and distribution of barriers connecting stationary
points of the PES have been long recognized as key aspects for
understanding the dynamics of fragile and strong liquids [6, 7].
Recently, sophisticated analysis of transitions between meta-
basins for model glass-forming liquids [50] have provided even
further quantitative evidence of the importance of the PES. In
this section, we employ a simple definition of average energy
barriers [51, 28] to quantify the roughness of the potential
energy surface of the NTW model.

Our analysis of the PES is based on the procedure
described in [28]. For each state point, we perform
minimizations of the mean square total force W to locate
the closest stationary points along the dynamical trajectory.
Typically, between 100 and 400 configurations per state point
are considered as starting points for W minimizations. It is
well known that W minimizations often locate points with a
low value of W (W ≈ 10−2–10−4) that are not true stationary
points. These points, usually called quasi-saddles, contain
nonetheless relevant information about the dynamics [52, 53].
In the following, we will include these points in our analysis,
without further distinction between true stationary points
and quasi-saddles. Having located the stationary points,
we diagonalize the Hessian matrix of the potential energy
surface and thus obtain a set of 3N eigenfrequencies ωα and
eigenvectors {eα

i }. The unstable eigenvectors (ω2
α < 0) are of

particular interest for our discussion, because they are more
directly related to the dynamical behaviour of the system [45].
As in previous work [28], we will report the imaginary branch
of the frequency spectrum along the real negative axis.

To estimate the average potential energy barriers we
follow the definition given by Cavagna [51]:

Es = 1

3

des

d fu
(8)

where es = es( fu) is the average energy of stationary points
having a fraction of unstable modes fu = nu/3N . As in [28],
we evaluate Es from the slope obtained by linear regression
of es versus fu of individual stationary points sampled at
temperature T . The procedure is illustrated in the upper panel
of figure 14, where fu is shown as a function of es for stationary
points sampled at selected temperatures (T < TO). The energy
barriers obtained for individual state points are collected in the
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Figure 13. Animations of representative elementary dynamical events at T = 0.29 (see supplementary materials for the corresponding MPG
files, realized with VMD [48]). Large white spheres and small dark spheres (red in the online version) correspond to particles of species 1 and
2, respectively. The particles involved in the elementary dynamical events are surrounded by a halo (yellow in the online version). Atomic
positions have been averaged over a time window of 4.2 reduced time units (700 time steps) to remove thermal motion and help in
visualization. Left panel: four small particles (indicated by arrows in the figure) in the central-upper part of the figure perform a correlated,
rotational motion in neighbouring tetrahedra (file movie1.mpg; size: 1.4 MB available at stacks.iop.org/JPhysCM/21/285107). Right panel:
the central particle (indicated by an arrow) explores its low density environment with a sequence of two jumps, associated with bond breaking
and reformation (file: movie2.mpg; size: 1.7 MB available at stacks.iop.org/JPhysCM/21/285107).

Figure 14. Upper plot: fraction of unstable modes fu as a function of
the energy es of individual stationary points sampled at the indicated
temperatures. Also included are linear fits, from which the average
energy barriers Es are obtained. Lower panel: average energy
barriers Es as a function of the average energy of stationary points
es = es(T ) for various T .

bottom panel as a function of the average energy of stationary
points es = es(T ).

From the comparison of the results above with those
obtained in [28] for LJ mixtures, we draw two main
conclusions, which highlight the peculiarity of network liquids:
(i) energy barriers in the NTW model are large compared
to typical thermal energies already for T ≈ TO and (ii)
their increase is very weak (less than 20%) with decreasing

temperature below TO. At least at a qualitative level, (ii)
confirms our conjecture [28] that the fragility of a glass-
forming liquid is related to the increase of average energy
barriers Es upon cooling below TO. It also supports
the overall picture that the energy landscape of network
liquids has a uniformly rough structure, with barriers whose
average amplitude is nearly independent of the energy level.
Organization of stationary points into meta-basin structures,
while present even in network liquids [54], should be of much
more limited extent than in the more fragile close-packed glass-
formers.

4.2. Localization properties

We now investigate the localization properties and real-space
structure of the unstable eigenvectors of the stationary points
sampled in the slow-dynamics regime. In particular, we aim
at explaining the more ‘homogeneous’ character of atomic
displacements observed in NTW, compared to the more fragile
LJ mixtures.

One possible measure of the degree of mode localization,
used in a number of previous investigations [55–57], is
provided by the gyration radius

Lα
c =

N∑
i=1

|eα
i |2|r i − rc|2 (9)

where rc = ∑N
i=1 r i |eα

i |2 is the ‘centre of mass’ of the
mode. Extended modes should have Lc ≈ 1.0, while Lc <

1.0 for localized modes. It turns out, however, that the
definition in equation (9) is inappropriate for systems with
periodic boundary conditions. The centre of mass of the
mode, in fact, is not well defined in a periodic system and
the value of Lc thus depends on the choice of the origin of
the frame of coordinates. As will be clear in the following,
this shortcoming is particularly evident in the case of strongly

10

http://stacks.iop.org/JPhysCM/21/285107
http://stacks.iop.org/JPhysCM/21/285107


J. Phys.: Condens. Matter 21 (2009) 285107 D Coslovich and G Pastore

Figure 15. Average gyration radius Lc of modes of frequency ω
calculated at ρ = 1.655 and T = 0.31 using different procedures
(see text for definitions): straightforward calculation using
equation (9) (dotted line), method (i) (dashed line) and method (ii)
(solid line).

Figure 16. Distribution of Lc for unstable modes sampled in the
slow-dynamics regime: in NTW at ρ = 1.655, T = 0.31 (upper
panel), in BMLJ at ρ = 1.2, T = 0.45 (middle panel) and in WAHN
at ρ = 1.297, T = 0.54 (lower panel).

localized modes. To overcome this problem, we employ
two alternative definitions of the gyration radius, obtained
by redefining the origin of the system coordinates: (i) the

Figure 17. Fraction of localized unstable modes ful in stationary
points as a function of the total fraction of unstable modes fu in
NTW at ρ = 1.655 (squares), BMLJ at ρ = 1.2 (circles) and WAHN
at ρ = 1.297 (triangles).

position of the particle that has the largest displacement on
mode α is used as the origin of the system coordinates for
the calculation of Lα

c and (ii) the gyration radius is determined
by minimization of Lα

c over all possible origins of the system
coordinates chosen on a grid of points subdividing the cubic
cell.

In figure 15 we show the average gyration radius Lc of
modes with frequency ω obtained for NTW at T = 0.31, using
the original definition and the two alternatives (i) and (ii). The
original definition substantially overestimates the extension of
strongly localized modes, while discrepancies are somehow
less pronounced for extended modes. For extended modes,
smaller discrepancies are apparent between methods (i) and
(ii). In the following, we will employ definition (ii). Only
minor quantitative differences in the following analysis appear
when using definition (i).

We now focus on the unstable modes, which have been
found to contain direct information on the dynamics of a glass-
forming liquid [45]. In figure 16 we show the distribution
of Lc for the NTW model at T = 0.29. For comparison,
we also show analogous distributions obtained for BMLJ and
WAHN at temperatures deep in the slow-dynamics regime.
The distribution of Lc for NTW is bimodal, with an excess
of localized unstable modes having Lc ∼ 0.2. A similar, yet
much less pronounced, excess peak at low Lc is observed in
the distribution for BMLJ, while no such feature is found for
the very fragile WAHN model. Justified by the fact that the
minimum of the distribution of Lc for NTW is located around
0.5, we define a mode localized (extended) if Lc is smaller
(larger) than 0.5. The precise location of this cutoff is irrelevant
for the discussion below.

Information about the relevance of localized unstable
modes in different glass-formers is conveniently represented
by the plot in figure 17, where the fraction of localized
unstable modes ful is shown as a function of fu. The NTW
model has a substantial fraction of localized unstable modes,
independent of the energy level in the PES. ful only weakly
increases by lowering fu, i.e. as the systems explore lower
regions of the energy landscape. In contrast, in the very fragile
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Figure 18. Typical extension of localized (a) and extended (b) unstable modes of a stationary point sampled at T = 0.29. Only particles with
displacement |eα

i | larger than 0.04 are shown, and the eigenvectors are scaled logarithmically. Particles of species 1 and 2 are shown as large
white spheres and small dark spheres, respectively. (a) ω = −12.8 and (b) ω = −0.2.

WAHN ful is very small and increases only on approaching
the bottom of the energy landscape. The BMLJ displays an
intermediate trend, since a larger fraction of localized unstable
modes is present. These localized modes of the BMLJ mixture
correspond to eigenvectors where a small particle and few other
neighbours have large displacements (see figure 13 in [28]).
It is remarkable that the trend observed in the localization
of unstable modes follows the different dynamic character
(strong, intermediate, fragile) of the models studied (see
also [58]). Moreover, our results provide a simple explanation
of the weak degree of dynamic heterogeneity in network
liquids in terms of an excess of localized, uncooperative
unstable modes, which are absent, or at least rarer, in the more
fragile LJ mixtures.

Finally, we describe the nature of the rearrangements
associated with localized and extended unstable modes of the
NTW model. The typical extensions of localized and extended
unstable modes are depicted in figure 18. From inspection of
the real-space structure of the atomic displacements we found
that the unstable modes reproduce the two classes of local
relaxation processes described in section 3. Extended unstable
modes usually involve coupled rotations of tetrahedra and
have a marked collective nature. These modes are thus good
candidates for explaining the rotational motions described in
section 3. Similar unstable modes have been found in the
unstable branch of the instantaneous normal mode spectrum
of BKS silica [19]. On the other hand, localized unstable
modes correspond rather well to the second class of local
rearrangements described in section 3. The mode depicted in
the left panel of figure 18 shows the passage of a large particle,
initially at the centre of a tetrahedron, through the face of
the tetrahedron, while a neighbouring under-coordinated small
particle moves in the opposite direction to create a bond. In the
intermediate stage along the reaction coordinate of the mode
the large particle is fivefold-coordinated. Our results indicate
that both types of elementary dynamical events should be taken
into account for a complete description of the dynamics in
network liquids. Approaches that focus only on soft stable
modes [59, 60] may not be able to capture the localized nature
of the dynamics in network liquids. In these systems, in

fact, the low frequency portion of the VDOS encompasses
collective modes that typically involve coupled rotations of
tetrahedra [61, 14].

5. Conclusions

In this work we have extended our previous analysis [27, 28]
on the glass transition of fragile Lennard-Jones mixtures by
introducing a new model of tetrahedral network glass-former
based on short-ranged spherical interactions. Remarkably,
these simple models of liquids, all based on pair potentials of
the Lennard-Jones type, are able to reproduce qualitatively a
wide spectrum of dynamic behaviours, thus allowing extensive
and detailed investigation of the glass transition phenomenon.

Notwithstanding the problem of crystallization, which
may occur in binary mixtures during longer simula-
tions [62, 63] but is not observed in our samples, we have
found that the fragile versus strong behaviour of our models
can be clearly identified and rationalized even at relatively
high T , but below the onset temperature of slow dynamics.
Using an appropriate parametrization of the T dependence of
relaxation times, we have found that the model network glass-
former is stronger at all studied densities than all previously
investigated LJ mixtures. Our results also confirm that the
degree of dynamic heterogeneity is less pronounced in network
than in close-packed glass-formers.

An important aspect of the glass transition concerns
the nature of atomic rearrangements occurring within the α-
relaxation time [64, 65]. The relation between dynamical
events and the nature of the local structure is of particular
interest [43, 44]. The analysis of the propensity of the motion
of particles within the late β-relaxation timescale, combined
with a comparative study of the non-Gaussian parameter in
different systems, has revealed a substantial homogeneity of
atomic mobility in the model network glass-former. However,
contrary to the case of LJ mixtures, it is possible to establish
a relation between local structure and dynamics at the single-
particle level by considering individual atomic trajectories.
Periods of high mobility are, in fact, clearly associated with
sequences of bond breaking and reformation, i.e. variations in
the local structure.
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The features described above and the variation of
dynamic behaviour in systems with different fragilities can
be rationalized well in terms of the features of the potential
energy surface. We have focused on the properties of the
unstable modes of saddles and quasi-saddles sampled within
the slow-dynamics regime. The amplitude of the average
energy barriers Es in the model network glass-former is always
larger than typical thermal energies below TO and depends
very mildly on the energy level. This contrasts with the
findings in the more fragile LJ mixtures, where Es rapidly
increases upon entering in the slow-dynamics regime [28]. The
localization of the unstable modes offers direct insight into the
elementary dynamic events leading to relaxation. In general,
as the system explores lower and lower regions of the energy
landscape, the unstable modes soften and retain a cooperative
character. In the NTW model, there is also a significant fraction
of localized unstable modes that persist in the whole slow-
dynamics regime. These localized modes typically describe
bond breaking and reformation, i.e. elementary rearrangements
that characterize the dynamics of the model. In contrast,
close-packed fragile liquids have a large fraction of extended
unstable modes, which soften and tend to localize only on
approaching the bottom of the landscape. As a result, the
dynamics in the latter systems is inherently more cooperative
than in network liquids.
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