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Abstract
The hard core Yukawa system, consisting of particles with an impenetrable core and interacting
via a repulsive Yukawa pair potential, is known to solidify either in a bcc or fcc crystal. Using
optimization strategies based on genetic algorithms we give evidence that at zero temperature
an additional centred tetragonal phase structure in the range of high packing fractions emerges.

1. Introduction

Displacive phase transformations (such as the martensitic
phase transition) are, as opposed to diffusive transformations,
characterized by a cooperative, homogeneous movement of the
particles in a solid crystal. This movement can be described
through the so-called Bain strains, combined in a strain matrix
that transforms a set of straight lines into a new set of straight
lines [1, 2]. Among the most popular and extensively studied
examples of a phase transition describable through a Bain
transformation is the bcc ↔ fcc transition [3–5], which is,
for instance, encountered in iron [6–9]. Recently computer
simulations for iron [10] based on a tight-binding potential
were able to reproduce this kind of phase transition.

The consideration of Bain transformations in soft
matter is a comparatively young issue: recent experimental
observations of bcc ↔ fcc transitions in sphere-forming
block copolymer/homopolymer blends were published in [11].
Another system that is able to solidify both in stable fcc
as well as bcc phases and represents therefore a suitable
candidate for such a transition are charged colloids. Following
the Derjaguin–Landau–Verwey–Overbeek theory [12, 13], the
effective interaction in a one-component colloidal dispersion of
equally charged colloids in a salty solution (which guarantees
the overall charge neutrality) is composed as follows: an
impenetrable core which represents the finite size of the
particles plus an adjacent Yukawa potential, i.e. �(r) ∝
e−κr/r . The system parameters determine the screening length
1/κ and the prefactor of the effective two-particle potentials. In
recent work it has been shown that, at high salt concentrations,
many-body interactions can also be included in this simple

functional form, while at low salt concentrations a truncated
Yukawa potential is more appropriate to take many-body
potentials into account [14–16].

The phase diagram of the hard core repulsive Yukawa
system has been studied in detail (see, for instance, [17, 18]).
Apart from the fluid phase, the existence of stable fcc and bcc
phases has unanimously been confirmed. The phase diagram
shows the dependence of the contact value of the Yukawa
tail, the inverse screening length, and the packing fraction in
a rich phase transition scenario. In the present contribution
we give evidence that (at least) at T = 0 a stable centred
tetragonal (ct) phase can also be observed, which represents
via a displacive phase transformation the bridge between the
fcc and the bcc structures. It is not clear why this phase has not
been identified in experiments or computer simulations to date.
On the one hand this lack might be due to our observations that
the phenomenon occurs only in a narrow density range and that
the energy differences between competing structures are very
small; another reason why this structure has not been identified
before might be related to the fact that this transition can only
be observed at very low temperatures.

We have identified this new and subtle feature in the phase
diagram of the hard core Yukawa system using optimization
tools that are based on the ideas of genetic algorithms
(GAs) [19] on the one hand and the concept of metric
scaling [5] on the other. GA-based search strategies have
proven to be very efficient and reliable in investigations
dedicated to identify ordered particle configurations of
minimum energy configurations (MECs) in several soft matter
systems [20–27] and to distinguish in a highly sensitive way
between competing ordered structures [28]. In the present
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context, the GA-based search strategy was able to identify the
existence of a stable centred tetragonal structure. The metric
scaling concept [5], on the other hand, has been used to locate
the transition densities with high accuracy.

This paper is organized as follows: we start by introducing
the model and our theoretical tools. In section 3 we present
and discuss our results and close the paper with concluding
remarks.

2. Model and theoretical tools

2.1. Model

The pair potential in the (repulsive) hard core Yukawa model
is given by

�(r) =
⎧
⎨

⎩

∞ r < σ

εσ

r
e−κ(r−σ ) r � σ ,

(1)

where σ is the hard core diameter, ε is the energy at contact and
κ is the range parameter (or inverse screening length). σ and ε

are our natural length and energy units; related dimensionless
quantities will be indicated by a star superscript, i.e. r � = r/σ
and κ� = κσ . We further introduce the number density ρ

(or its dimensionless counterpart, ρ� = ρσ 3) and the packing
fraction η = ρ�π/6.

Our investigations are performed in the NPT ensemble
since a proper inclusion of the hard core in the GA
framework can be formulated more conveniently in this
ensemble [26, 27]. Under these conditions, the equilibrium
structures are identified by minimizing the Gibbs free energy,
G; we introduce at this point the Gibbs free energy per particle,
g = G/N , and a further closely related, dimensionless
quantity, g� = g/ε. To be consistent with previous
contributions we term the configurations that minimize the
Gibbs free energy as MECs.

At zero temperature, g = e + P/ρ. Here P is the pressure
(or, in its reduced dimensionless form, P� = Pσ 3/ε), ρ is
the particle density and e is the lattice sum per particle and per
energy unit, i.e. e� = E/(Nε), E being the lattice sum. For
the reduced quantities we obtain the following relation:

g� = e� + P�

ρ�
. (2)

Due to the infinite range of the Yukawa tail, summations have
to be truncated at a cutoff radius rcut, guaranteeing �(r) to be
sufficiently small for r > rcut. To be more specific, rcut is
defined in the present contribution via

δ

∫ ∞

σ

d3r�(r) =
∫ ∞

rcut

d3r�(r), (3)

a criterion which guarantees that the neglected contributions to
the lattice sums are of the order of δ times the total energy; in
our calculations we used δ = 10−10.

2.2. Theoretical tools

To calculate the phase diagram at T = 0 a set of candidate
crystal structures is needed. We obtained these structures via
our search strategy based on GAs. This approach delivers in
our ensemble the equilibrium density ρ and provides with a
high success rate the equilibrium crystal structure C at given
pressure P , i.e. the three vectors defining the unit cell and the
positions of the additional basis particles. For technical details
we refer to [27] and references therein. Applying the GA-based
search strategy for our particular system at T = 0, has led to
the fcc, the ct and the bcc structures as possible candidates.

In order to draw the full phase diagram at T = 0, we have
to identify the transition pressures. For the case of the square
shoulder, this task was reasonably easy due to the fact that for
this particular system g� is a linear function of the pressure
(cf discussions in [26, 27]) and transition points can easily and
exactly be determined by intersecting straight lines. For the
HCY system, however, g� is no longer a linear function of
P�; thus, in an effort to locate the transition pressure values
of competing structures with high accuracy we have taken
recourse to the concept of metric scaling presented in [5] and
specified in the following.

We start with the candidate structures of cubic symmetry
(i.e. bcc and fcc lattices) which are characterized by a single
free parameter, i.e. the edge length of the cubic box. We
introduce a type of scaling, which is characterized by a single
scaling factor s, that scales all distances and hence preserves
symmetry. For convenience we define the reference structure
as the one where the cores of the particles are in direct contact
and set s = 1 for this close-packed structure. Obviously
this value of s represents the smallest possible s value, which
we denote as slow. Let us consider a crystal lattice of cubic
symmetry, C0, and of density ρ0, which represents the MEC
at P0 and which, in addition, is characterized by a scaling
parameter s0. Then we denote a structure that is obtained by
scaling C0, with the factor s as C̃(C0, s). We now consider the
class of structures {C̃(C0, s)|s positive}: among these scaled
structures we look for the one with the lowest Gibbs free
energy per particle at given pressure; this value of s is termed
s̄ and the corresponding thermodynamic potentials is denoted
as g(P; C0, s̄).

In the following we give evidence that, for the cubic
structures, s̄ is uniquely defined. Let us consider for the
moment only the Yukawa contribution to the potential (1), i.e.
ignoring the hard core. Since the Yukawa tail is positive for all
r and all κ , we obtain for obvious reasons

e(C0, s) > 0,
∂e(C0, s)

∂s
< 0,

and
∂2e(C0, s)

∂s2
> 0

(4)

for all s > 0, where e(C0, s) stands for the lattice sum per
particle of the crystal structure obtained by scaling C0 with
s. In addition, since the equilibrium density ρ0 of C0 is also
known, the density of the scaled crystal is simply given by
ρ(s) = (ρ0s3

0 )/s3. Hence, the pressure contribution to the
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Figure 1. Sketch of the (body) centred tetragonal lattice, with edge
lengths a, a and c as labelled.

Gibbs free energy per particle is Ps3/(ρ0s3
0 ) and we obtain in

total

g(P; C0, s) = e(C0, s) + Ps3/(ρ0s3
0 ). (5)

From equations (4) and (5) it is obvious that

∂2g(P; C0, s)

∂s2
> 0 for all P and s > 0. (6)

For s → 0, g(P; C0, s) becomes infinite due to the 1/r
repulsion; for s → ∞, g(P; C0, s) becomes infinite due to
the second contribution in equation (5), i.e.

lim
s→0

g(P; C0, s) = ∞ and lim
s→∞ g(P; C0, s) = ∞.

(7)
These two limiting cases of g(P; C0, s) in combination with
the fact that this function is convex for positive s values (cf
equation (6)) guarantees that there exists exactly one minimum
of g(P, C0, s) for s > 0, which we denote as smin.

Taking the hard core and the cutoff radius into account
now, it is obvious that there exists (i) a smallest possible
scaling factor, slow = 1 (introduced above), as well as (ii) a
largest possible scaling factor of shigh, where the shortest
distance between two points in the entire lattice is equal to rcut.
Therefore, the equilibrium structure out of the set of scaled
structures {C̃(C0, s)|s positive} is obtained by a scaling factor,
seq, which is in general smin. Only if smin < slow is seq = slow

and in the case smin > shigh then seq = shigh. With all this in
mind, g(P) can be determined—starting from the value P0—
for any P value.

Extending the concept of metric scaling to the ct structure
we have to include an additional metric scaling parameter, f .
The ct lattice, visualized in figure 1, is characterized by edge
lengths a, a and c.

For reasons explained below we use the following scaling
relations:

c( f, s) =

⎧
⎪⎨

⎪⎩

sσ f <
√

3
2

s f
2σ√

3

√
3

2 � f
(8)

and

a( f, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s
3σ

2
√

2

1

f
f <

√
3

2

s
√

3 − f 2

√
2

3
σ

√
3

2 � f �
√

3
2

sσ
√

3
2 < f .

(9)

While s scales all distances to the same amount, f guarantees
that the nearest-neighbour distance between the particles in
the corresponding ct structure is kept constant. The above
definitions for c( f, s) and a( f, s) impose in the interval√

3/2 � f �
√

3/2 that (i) the value of the tridiagonal
(volume diagonal) is kept to a constant value of 2σ s and that
(ii) the reduced density, ρ�, varies with s and f according to

ρ� = 1

s3

3
√

3

6 f − 2 f 3
. (10)

In the scaling relations (8) and (9) the case f <
√

3/2
corresponds to the situation where c represents the shortest
edge of the conventional unit cell, while the case f �

√
3/2

corresponds to a being the shortest edge of the cell. In the
intermediate f range, i.e. for

√
3/2 � f �

√
3/2, the above

scaling realizes a Bain transformation from a bcc (with f = 1)
to an fcc (with f = √

3/2) lattice. Furthermore, we denote
bcc and fcc lattices where particles are in direct contact (i.e.
for s = 1) by bccσ and fccσ , respectively. In figure 2 the
Bain transformation from bccσ to fccσ via the ctσ structure(s)
is visualized: while s is kept constant at 1, f varies from 1 to√

3/2.
In an effort to obtain the MECs formed by the ct lattice as

functions of s and f , we proceed similarly as in the previous
case: assume we have a crystal lattice C0, which represents
the MEC at P0 and has density ρ0, and which, in addition, is
characterized by scaling parameters s0 and f0. Then we denote
a structure that is obtained by scaling C0, with the factors s and
f as C̃(C0, s, f ). If we now consider the class of structures
{C̃(C0, s, f )|s and f positive}, then we search the values of
s and f (termed s̄ and f̄ ), so that C̃(C0, s̄, f̄ ) minimizes the
Gibbs free energy per particle at some given pressure P , which
we denote as g(P; C0, s̄, f̄ ). In contrast to the lattices with
cubic symmetry, the ct-based structures have to be identified
via numerical minimization.

3. Results

Working in the NPT ensemble, we impose a pressure value,
P�, and select a κ value; as a result the optimization procedure
yields the equilibrium density for this particular state point.
A first search for equilibrium structures on a coarse (P�, κ�)

grid using GA-based optimization techniques indicates the
emergence of three equilibrium structures: bcc, fcc and ct
lattices. The exact location of the stability ranges and the
transition pressures between the competing structures has been
realized with the concept of metric scaling as outlined in
section 2.2.

3



J. Phys.: Condens. Matter 21 (2009) 474202 G J Pauschenwein and G Kahl

(a) (b)

(c) (d)

Figure 2. Visualization of the Bain transformation via variation of f
at constant s = 1 from the bccσ to the fccσ structure via two
intermediate ctσ structures as labelled. In (a)–(c) the centred particle
is the one with the dark shading (red), while in (d) a side face of the
conventional fccσ unit cell is marked by the particles with darker
shading (red). (a) f = 1 (bccσ ), (b) f = 1.05 (ctσ ),
(c) f = 1.15 (ctσ ) and (d) f = √

3/2 (fccσ ).

(This figure is in colour only in the electronic version)

Anticipating that the ct structure is encountered only
in a narrow region of parameter space, we start with the
presentation of the zero temperature phase diagram where only
the bcc and fcc structures are included: they are depicted
in figure 3(a) in the (κ�, P�) plane and in figure 4(a) in
the (κ�, η) plane. From figure 3(a) we learn that at zero
temperature and for κ� values up to κ�

max � 1.875 three phases
are observed: at low pressure values, an fcc lattice is stable,
which transforms upon compression via a first-order phase
transition into a bcc lattice; then follows the ct phase (to be
discussed below) which then transforms into an fcc phase and
for higher pressure values into an fccσ phase, which remains
stable up to arbitrarily high pressure. The κ� range where the
bcc phase is stable extends from κ = 0 to κ�

max. Along the
high pressure solid line a bccσ phase is stable (cf the label
in 3(a)) where the hard cores of the particles are in direct
contact, thus ηbccσ

= π
√

3/8 ∼ 0.6802. The range where
the bcc phase is stable is indicated in figure 3(a) by a solid
line. For κ � κ�

max all equilibrium structures are fcc crystals:
among these the cores of the particles are above a κ-dependent
pressure threshold, i.e. P� = P�

fccσ
(κ�), in direct contact,

forming thus fccσ structures. The dashed line in figure 3(a)
indicates the limiting pressure above which the system forms
an fccσ structure. Finally, in the region between the full and

Figure 3. (a) A zero temperature phase diagram for the hard core
Yukawa model in the (κ�, P�) plane involving only the cubic phases.
Solid lines delimit the stability range of the bcc phase, while the
dashed line indicates the limiting pressure above which the particles
form a close-packed fccσ structure. (b) An enlarged region of the
zero temperature phase diagram of the hard core Yukawa model in
the (κ�, P�) range where the ctσ lattice represents the energetically
most favourable structure. The dashed–dotted line indicates the
transition line between the bccσ and fcc structures if only cubic
lattices were considered. In these pressure units the fccσ phase is
only encountered outside the displayed range.

the dashed lines, the ct phase is stable: this part of the phase
diagram will be discussed below.

In figure 4 the zero temperature phase diagram for our
system is depicted in the (κ�, η) plane. We see that the bcc
phase is encountered in particular in the low-κ range; it remains
stable for packing fractions up to η = π

√
3/8, where a

bccσ structure is formed. Then, upon further increasing the
density a ct phase emerges in a narrow η range (to be discussed
below), which then transforms into an fcc lattice. Finally, at
η = π/3

√
2 an fccσ phase is formed where the cores are in

direct contact and no further compression is possible. Outside
a parabola-shaped area, i.e. at intermediate and high κ values,
only the fcc phase is stable. We have complemented our data
with the phase diagram of the hard core Yukawa system for
T > 0, taking data from [18]. Of course, at finite temperatures
a fluid phase also emerges at low densities. As one can see
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Figure 4. (a) A phase diagram for the hard core Yukawa model in the
(κ�, η) plane involving only the cubic phases and, for T > 0, the
fluid phases (as labelled); temperatures as indicated in the inset. Data
for T > 0 have been taken from [18]. Vertical broken lines indicate
the packing fractions of bccσ and fccσ phases, i.e. η = π

√
3/8 and

η = π/3
√

2, respectively. (b) An enlarged region of the zero
temperature phase diagram of the hard core Yukawa model in the
(κ�, η) range where the ctσ lattice represents the energetically most
favourable structure.

in figure 4(a), the range where the bcc structure is stable
nicely merges with vanishing temperature with our (T = 0)

prediction of the coexistence curve.
Now we turn to the identification of the ct phase, emerging

in a narrow η interval between bccσ and the fcc phase. In
an effort to locate these transitions, we intersect the g curves,
evaluated for the competing structures over representative P
ranges. While for the cubic phases minimization of g with
respect to the only scaling parameter s is rather trivial, the
determination of the corresponding curve for the ct structure is
more delicate since optimization has to be done with respect
to the two scaling parameters s and f . However, in our
investigations we have observed the following: in the pressure
range where the ct structure is found to be the most stable one,
we always find s = 1, corresponding thus to a ctσ structure
where the cores of the particles are always in direct contact.
Once the g�(P) curves for all three competing structures have

Figure 5. (a) Scaling parameters s and f as introduced in the text
(see section 2.2), characterizing the ordered equilibrium structures
for the hard core Yukawa system for κ� = 0.4 as functions of the
reduced pressure P� as labelled. (b) Differences in the reduced Gibbs
free energy, g�

bcc − g�
ctσ

and g�
fcc − g�

ctσ
, of the competing structures as

labelled as functions of the reduced pressure P�. Vertical dotted lines
separate (from left to right) regions where the bcc, bccσ , ctσ , fcc and
fccσ structures represent the energetically most favourable lattices.
The inset covers those pressure ranges where the ct lattice is the most
stable structure.

been evaluated, we determine numerically their intersection
points which define the transition pressure values.

Now we are able to trace the full phase diagram. Enlarged
views of the relevant parts are depicted in figure 3(b) in the
(κ�, P�) plane and in figure 4(b) in the (κ�, η) plane. In
the former case we have used a rescaled pressure axis to
guarantee an optimum visibility of the range of stability of the
respective phases: here, P�

bccσ
and P�

fccσ
represent the smallest

pressure values for which the bccσ and fccσ phases are stable,
respectively; we note that both P�

bccσ
and P�

fccσ
are functions

of κ�, whose actual values can be inferred from figure 3(a).
From figure 3(b) we learn that for 1.16 � κ� � 1.875 a direct
transition from the bccσ to the fcc lattice is observed, while for
κ� � 1.16 an intermediate ctσ phase is the energetically most
favourable one. The region in the (κ�, η) plane where the ctσ
structure is stable is visualized in figure 4(b).

In figures 5 and 6, we display the scaling parameters s
and f as well as the Gibbs free energy as functions of P�

considering two different κ� values: κ� = 0.4 and 1.4. In the
first case, the ctσ structure is stable in a narrow pressure range,
while at κ� = 1.4 a direct transition from the bccσ to the fcc
structure occurs. From the pressure dependence of the scaling
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Figure 6. Same as figure 5 for κ� = 1.4. Note that for this κ� value
and over the entire pressure range the ct structure is energetically less
favourable than the bcc or the fcc lattices.

parameters we can nicely trace the respective transitions:
starting for κ� = 0.4, we first observe at low pressure values a
bcc structure (s > 1) which transforms into a bccσ structure
(s = 1). Then a ctσ structure occurs (i.e. s ∼ 1), which
first transforms into an fcc lattice and under higher pressure
becomes an fccσ structure. Concomitantly, f keeps the value
of 1 for the bcc and the bccσ phases and then continuously
increases for the ctσ phase to a limiting value of f ∼ 1.05 (for
κ� = 0.4). Then f changes discontinuously to f = √

3/2,
i.e. the value that characterizes the fcc structure. We conclude
from these observations that the transition bccσ → ctσ is
continuous, while the change from ctσ → fcc is (most likely)
discontinuous. For κ� = 1.4 where no ct structure appears, f
changes discontinuously from f = 1 (bcc) to f = √

3/2 (fcc).
Again, the s curves provide information whether particles are
in the respective lattices in direct contact (i.e. s = 1) or not
(i.e. s > 1). The energy curves (depicted in the respective
(b) panels of figures 5 and 6) give evidence that the differences
between all competing structures are very small.

4. Conclusion

We have successfully applied our GA-based search strategy
to identify the zero temperature phase diagram of the hard
core Yukawa model and have revealed the existence of stable
ct structures at very high pressure values, as long as the
range parameter κ is not too large. The region in the phase
diagram where the ct structures turns out to be stable is found

to be rather narrow and the energy differences between the
competing structures are very small. These two facts are
most likely the reason why the ct structure has not been
identified for the hard core Yukawa system, yet: computer
simulations and other theoretical approaches (that are based
on approximate schemes) have problems in providing results
for thermodynamic potentials of sufficient accuracy and in
experiments it might be difficult to exactly identify the narrow
parameter range where a ct structure should be stable. On
the other hand, our investigations impressively demonstrate
that GA-based optimization techniques are able to distinguish
between competing lattices even if the differences in their
respective energies are very small.
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[8] Cuenya B R, Doi M, Löbus S, Courths R and Keune W 2001

Surf. Sci. 493 338
[9] Suzuki T, Shimono M and Kajiwara S 2001 Mater. Sci. Eng. A

312 104
[10] Engin C and Urbassek H M 2008 Comput. Mater. Sci. 41 297
[11] Huang Y-Y, Hsu J-Y, Chen H L and Hashimoto T 2007

Macromolecules 40 3700
[12] Derjaguin B V and Landau L 1941 Acta Phys.-Chim. 14 633
[13] Verwey E J W, Overbeek J T G and van Nes K 1948 Theory of

the Stability of Lyophobic Colloids (New York: Elsevier)
[14] Dobnikar J, Chen Y, Rzehak R and von Grünberg H H 2003

J. Phys.: Condens. Matter 15 S263
[15] Dobnikar J, Rzehak R and von Grünberg H H 2003 Europhys.

Lett. 61 695
[16] Dobnikar J, Chen Y, Rzehak R and von Grünberg H H 2003

J. Chem. Phys. 119 4971
[17] Meijer E J and El Azhar F 1997 J. Chem. Phys. 106 4678

El Azhar F, Baus M, Ryckaert J-P and Meijer E J 2000
J. Chem. Phys. 112 5121

[18] Hynninen A-P and Dijkstra M 2003 Phys. Rev. E 68 021407
[19] Holland J 1975 Adaption in Natural and Artificial Systems

(Ann Arbor, MI: University of Michigan Press)
[20] Gottwald D, Kahl G and Likos C N 2005 J. Chem. Phys.

122 204503
[21] Mladek B M, Gottwald D, Kahl G, Neumann M and

Likos C N 2006 Phys. Rev. Lett. 96 045701

6

http://dx.doi.org/10.1051/jphys:019830044090111700
http://dx.doi.org/10.1080/01418619408242252
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1016/0001-6160(71)90032-0
http://dx.doi.org/10.1016/0001-6160(71)90065-4
http://dx.doi.org/10.1016/S0039-6028(01)01239-0
http://dx.doi.org/10.1016/S0921-5093(00)01862-1
http://dx.doi.org/10.1016/j.commatsci.2007.04.019
http://dx.doi.org/10.1021/ma070066f
http://dx.doi.org/10.1088/0953-8984/15/1/335
http://dx.doi.org/10.1209/epl/i2003-00142-5
http://dx.doi.org/10.1063/1.1595642
http://dx.doi.org/10.1063/1.473504
http://dx.doi.org/10.1063/1.481068
http://dx.doi.org/10.1103/PhysRevE.68.021407
http://dx.doi.org/10.1063/1.1901585
http://dx.doi.org/10.1103/PhysRevLett.96.045701


J. Phys.: Condens. Matter 21 (2009) 474202 G J Pauschenwein and G Kahl

Mladek B M, Gottwald D, Kahl G, Neumann M and
Likos C N 2006 Phys. Rev. Lett. 97 019901

[22] Mladek B M, Gottwald D, Kahl G, Likos C N and
Neumann M 2007 J. Phys. Chem. B 111 12799

[23] Fornleitner J and Kahl G 2008 Europhys. Lett. 82 18001
[24] Fornleitner J, Lo Verso F, Kahl G and Likos C N 2008 Soft

Matter 4 480

[25] Fornleitner J, Lo Verso F, Kahl G and Likos C N 2009
Langmuir at press (doi:10.1021/1a900421v)

[26] Pauschenwein G J and Kahl G 2008 Soft Matter 4 1396
[27] Pauschenwein G J and Kahl G 2008 J. Chem. Phys.

129 174107
[28] Kahn M, Weis J-J, Likos C N and Kahl G 2009 Soft Matter at

press

7

http://dx.doi.org/10.1103/PhysRevLett.97.019901
http://dx.doi.org/10.1021/jp074652m
http://dx.doi.org/10.1209/0295-5075/82/18001
http://dx.doi.org/10.1039/b717205b
http://dx.doi.org/10.1021/1a900421v
http://dx.doi.org/10.1039/b806147e
http://dx.doi.org/10.1063/1.3006065

	1. Introduction
	2. Model and theoretical tools
	2.1. Model
	2.2. Theoretical tools

	3. Results
	4. Conclusion
	Acknowledgments
	References

