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1. Introduction

When a fluid is brought into contact with a disordered porous matrix, its physi-

cal properties change drastically. A large number of experimental and theoretical

studies performed during past years provide unambiguous evidence for this phe-

nomenon. This field of research is, however, not only of pure academic interest,

but rather has high technological relevance. For an overview of the vast literature

available in this field we refer to Refs. [1–3]. Most of the experimental investigations

carried out so far were dedicated to so-called ’hard’ systems, where typically atomic

or molecular fluids (as, for instance, 4He, N2, or 3He-4He mixtures) were brought

into contact with matrices such as Vycor, aerogel, or silica gels. Likewise, most of

the theoretical investigations were dedicated to systems where particles interact

via a harsh repulsion plus some adjacent (attractive) potential tail: among those

one finds simple fluids (e.g., [2, 4–6] and references therein), binary mixtures [7–9],

or fluids with orientational degrees of freedom [10–14].

The rapidly growing interest in soft matter systems during recent years stim-

ulates the obvious extension to investigate how the properties of a soft system

(typically, a colloidal dispersion) change when it is brought into contact with a

(soft) porous matrix. Only a few contributions have been dedicated up to now to

this problem (e.g., [15, 16]). Recent experimental and theoretical progress in soft

matter physics provide a sufficient amount of motivation to extend investigations

also to soft systems that are in contact with a disordered porous matrix: on the

experimental side, the considerably larger size of the particles (typically ranging

from a few nm to µm) allows a more convenient observation of the system by using

techniques such as video [17] and/or confocal [18] microscopy. In addition, optical

tweezers [19] offer the possibility to fix particles in deliberately chosen positions,

tailoring thereby a suitable matrix configuration. From the theoretical point of

view, the description of particle interactions in soft systems via effective poten-

tials [20] has reached nowadays a very high level of sophistication, so that even for

colloidal particles with a complex internal architecture highly reliable effective in-

teractions can be deduced via suitable averaging procedures over the huge number

of internal degrees of freedom. Finally, theoretical frameworks have been proposed

to consider more realistic models for matrix representations [21–26].

This contribution is dedicated to an investigation of how the presence of a dis-

ordered matrix, built up by soft particles, influences the structural properties of a
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soft fluid that is imbibed into this porous structure. Such a system is commonly

referred to as a quenched-annealed (QA) system, where the matrix configurations

are quenched from an equilibrium fluid and the fluid component is subsequently

allowed to equilibrate in it. Since we aim at systematic investigations of structural

trends, we have restricted ourselves to one of the standard models in soft matter

physics, i.e., the Gaussian core model (GCM). This model, originally introduced

several years ago [27, 28] in a different context, has meanwhile turned out to be a

reasonably reliable model system for colloidal dispersions, such as polymers, den-

drimers, or microgels. In this contribution we have used the Gaussian potential for

all interactions involved, namely the matrix-matrix, the matrix-fluid, and the fluid-

fluid potential. The structural properties of the system were obtained via standard

Monte Carlo simulations and via integral-equation theory. In the latter case our

investigations are based on the well-established replica Ornstein-Zernike (ROZ)

formalism [29, 30], a framework that is known to be highly successful in describ-

ing the structural and thermodynamic properties of fluids confined in disordered

porous structures. The first part of the investigation is dedicated to the influence

of the structure of the matrix on the structural properties of the fluid, identifying

thereby fingerprints of the matrix-matrix correlations in the fluid-fluid structure

factor. These findings are interpreted on a more profound level in the second part of

the study, where we focus on the so-called blocked and connected contributions to

the fluid-fluid correlation functions. Finally, we study the influence of a mismatch

in the temperature of the quenched matrix configuration and of the equilibrated

fluid on the structural properties.

This contribution is organised as follows: in the subsequent section we present

our model and the theoretical methods that we use to calculate the structural

properties of our system. In Section 3 we discuss our results and then close the

contribution with concluding remarks.

2. Model and Methods

The matrix of our QA system is generated from a configuration of an equilibrated

fluid of matrix density ρm and matrix temperature Tm by fixing at some instant

the positions of the particles. The annealed component of fluid number density ρf

is imbibed into the system and is allowed to equilibrate at a temperature Tf .

The interactions between the different types of particles in the system, charac-
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terised by index combinations ’mm’, ’fm’, and ’ff’ (’f’ standing for the fluid and

’m’ for the matrix) are parametrised by the Gaussian core model potential,

ΦGCM(r) = ǫ e−(r/σ)2 , (1)

where σ and ǫ are length- and energy-scales used in the following as units of length

and energy, respectively. The GCM, first proposed by Flory and Kriegbaum [27]

and Stillinger [28], can be considered as a simple, but reasonably effective model

potential between the centres of mass of two linear polymer chains. Meanwhile it

has become one of the standard models in soft matter physics. One reason for our

choice of this particular interaction is the fact that the equilibrium phase diagram

of the GCM is known with high accuracy [31, 32].

2.1. Replica Ornstein-Zernike Equations

A successful theoretical approach to describe the structural and thermodynamic

properties of QA systems was pioneered by Madden and Glandt [29] and later by

Given and Stell [30]. The properties of the annealed component that equilibrates in

the presence of a matrix are calculated in a double averaging procedure: first, over

the degrees of freedom of the fluid particles for a given matrix configuration, and,

second, over all possible matrix configurations. This averaging can conveniently be

effectuated using the replica trick [33]. Starting from the Ornstein-Zernike equa-

tions of an equilibrated (s+1) component system, which consists of the matrix and

s non-interacting copies (replicas) of the fluid, one arrives, after taking the limit

s → 0, at the replica Ornstein-Zernike equations [29, 30]

hmm(r) = cmm(r) + ρmcmm(r) ⊗ hmm(r) (2)

hfm(r) = cfm(r) + ρmcfm(r) ⊗ hmm(r) + ρfcc(r) ⊗ hfm(r) (3)

hf f(r) = cf f(r) + ρmcfm(r) ⊗ hfm(r) + ρfcc(r) ⊗ hc(r) (4)

hrr′(r) = crr′(r) + ρmcfm(r) ⊗ hfm(r) + ρfcf f(r) ⊗ hrr′(r) + ρfcrr′(r) ⊗ hf f(r) − 2ρfcrr′(r) ⊗ hrr′(r).(5)

where the indices ’r’ and ’r′’ stand for distinct replica components. The hij(r) and

the cij(r) are the total and the direct correlation functions, respectively. Further we

introduce the connected correlation functions hc(r) = hf f(r) − hrr′(r) and cc(r) =
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cf f(r) − crr′(r) as well as the blocked correlation functions hb(r) = hf f(r) − hc(r)

and cb(r) = cf f(r) − cc(r). In the relations above, the symbol ⊗ stands for a

convolution integral. Note that the first of the ROZ equation [Equation (2)] is

decoupled from the remaining three relations, which, in turn, form a set of coupled

integral-equations that has to be solved – similar as in the equilibrated case [34] –

in combination with a suitable closure relation that relates the set of correlation

functions with the corresponding interactions.

Justified by the general observation that for bounded, purely repulsive interac-

tions the hypernetted chain (HNC) closure is considered to be a highly appropriate

choice [31, 35], we use this particular relation as a complement to the ROZ equa-

tions. The HNC closure reads

hij(r) + 1 = exp[−βνΦij(r) + hij(r) − cij(r)] (6)

where ’ij’ stands for the different index combinations introduced above and ’ν’

stands for the index m in case ij = mm and f in all other cases. Note that Φrr′(r) ≡
0 and Φij(r) = ΦGCM(r) otherwise. Moreover, the formalism allows to take into

account independently both the temperature of the matrix, βm = (kBTm)−1, as

well as the temperature of the fluid, βf = (kBTf)
−1. The numerical solution of

the ROZ equations [Equations (2)-(5)] in combination with the closure relations

[Equation (6)] has been realised via a standard iterative procedure for solving

coupled integral-equations.

For the present investigations the structure factors are of particular relevance.

They are defined as functions of the wave number k as follows:

Smm(k) = 1 + ρm h̃mm(k) (7)

Sfm(k) =
√

ρmρf h̃fm(k) (8)

Sf f(k) = 1 + ρf h̃f f(k) (9)

Sc(k) = 1 + ρf h̃c(k) (10)

Sb(k) = Sf f(k) − Sc(k), (11)

where the tilde denotes the Fourier-transform of the respective total correlation

function.
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2.2. Monte Carlo Simulations

The theoretical data are complemented by extensive Monte Carlo (MC) simulations

where the above mentioned double average has been carried out explicitly. In the

practical realisation of this recipe we have first generated a matrix configuration

from an independent simulation run, fixing the positions of the particles at some

arbitrarily chosen instant once the system has equilibrated at temperature Tm.

Then, the fluid particles are brought into contact with this porous matrix configu-

ration and the subsequent simulation of the system is carried out at a temperature

Tf .

The simulations were performed in a cubic box of side length L = 10, featuring

periodic boundary conditions. Typically 50 ≤ Nm ≤ 300 matrix particles and

50 ≤ Nf ≤ 500 fluid particles were considered. To speed up the simulation we

have used the lattice Monte Carlo technique introduced by Panagiotopoulos [36].

The simulation-box was sub-divided into 256 lattice positions in each direction,

forming a lattice of 2563 possible particle positions. We point out that no change

in the structural properties could be observed using a higher number of lattice

positions. To increase the efficiency of the simulation even further we also used the

cell-list method [37]. Simulations extended over 1,000,000 MC sweeps. Correlation

functions were obtained by averaging over at least 10,000 fluid configurations and

over 10–40 independent matrix configurations.

Following the formalism of Krakoviack [38], the structure factors introduced

above were calculated directly via the Fourier-components of the respective one

particle densities as follows: introducing

ρm(k) =

Nm∑

j=1

eik·sj ρf(k) =

Nf∑

j=1

eik·rj , (12)

where the sj are the positions of the immobile matrix particles and the rj are the

positions of the fluid particles, the expressions for the structure factors read

Sf f(k) =
1

Nf
〈ρf(k) ρf(−k)〉 (13)

Sfm(k) =
1√

NfNm
〈ρf(k) ρm(−k)〉 (14)
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Sb(k) =
1

Nf
〈ρf(k)〉 〈ρf(−k)〉 (15)

Sc(k) =
1

Nf
〈δρf(k) δρf(−k)〉, (16)

where δρi(k) = ρi(k) − 〈ρi(k)〉 with i = m or f. In these expressions 〈· · ·〉 denotes

the thermal average over the degrees of freedom of the fluid particles at a given

matrix configuration, while · · · stands for the average over different, but equivalent

matrix configurations. The wave vectors k are chosen to be compatible with the

cubic simulation box, i.e., k = (2π/L)(nx, ny, nz), with the ni being integers. We

point out that a straightforward evaluation of Sb(k) does not necessarily guarantee

for a proper decay of this structure factor for large k-values. Numerical problems

related to the evaluation of Sb(k) will be discussed in Section 3.2.

3. Results

In this section we describe the structural properties of the quenched-annealed GCM

system. We report results of MC simulations and integral-equation theory for den-

sities ρf and ρm in the range 0.05 ≤ ρf ≤ 0.50 and 0.05 ≤ ρm ≤ 0.30. In most

simulations, we kept the temperature of the matrix, Tm, and that of the fluid, Tf ,

equal to each other and fixed at 0.01, i.e., slightly above the upper freezing tem-

perature of the equilibrium GCM fluid [31]. In a few cases, we also varied Tm and

Tf independently to investigate the effect of a temperature mismatch between the

fluid and the matrix.

3.1. Fluid-fluid correlations

To characterise the structure of our model we used the structure factors introduced

in Section 2. We start our discussion from the fluid-fluid structure factor Sf f(k). In

the left panel of Figure 1 we show results of MC simulations for different fluid den-

sities at constant matrix density ρm = 0.1, along with the corresponding solutions

of the ROZ equations [Equations (2)-(5)] complemented by the HNC approxima-

tion [Equation (6)]. The right panel of Figure 1 displays the corresponding data

obtained at higher matrix density (ρm = 0.3). Comparison between theoretical
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Figure 1. Fluid-fluid structure factors Sf f(k) as a function of k at ρm = 0.1 (left panel) and ρm = 0.3 (right

panel) for different values of ρf . The temperatures are Tf = Tm = 0.01. Symbols and solid lines indicate

results from MC simulations and solutions of the ROZ equations (HNC approximation), respectively.

Different data sets have been displaced in vertical direction by 1.5.

predictions and simulation results shows that the HNC closure is able to account

for fluid-fluid correlations at a quantitative level in the whole investigated density

regime. In the light of previous studies on both equilibrium and quenched-annealed

systems [5, 31, 39], the effectiveness of the HNC approximation in describing fluid-

fluid correlations of the present model is unsurprising. On the one hand, in fact,

it is known that HNC provides a satisfactory description of the structure of QA

systems of hard spheres [5, 39]. On the other hand, HNC is also regarded as a

reliable closure for the equilibrium GCM fluid [31] and, more generally, for fluids

with soft interactions [20].

A remarkable feature is also apparent in Figure 1. For ρm = 0.1 and all studied

fluid densities (see left panel), Sf f(k) displays a distinct pre-peak located at small

wave-vectors (k ∼ 3). Anticipating the discussion given below, this pre-peak in

the fluid-fluid structure factor is a manifestation of the underlying structure of

the matrix. For ρf & ρm the height of the pre-peak decreases with increasing

fluid density, while its position remains essentially constant. In the same density

regime, the main peak displays a more complex evolution, which resembles the

behaviour of the equilibrium GCM fluid [31]. In fact, the position of the main

peak shifts markedly to larger k with increasing density, while its height displays

a non-monotonic behaviour. Finally, we note that a similar “double-peak” shape

is present also at ρm = 0.3 and high fluid densities (see right panel of Figure 1). In

this latter case, however, the pre-peak is shifted to k ∼ 4 and eventually merges
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Figure 2. Height of the main peak of Sf f(k) determined from MC simulations as a function of ρf for

different values of ρm (Tf = Tm = 0.01).

with the main peak at low ρf .

The non-monotonic behaviour of the main peak in Sf f(k) is evidenced more

clearly in Figure 2, where the height of the main peak is plotted as a function of ρf

for selected values of ρm. In particular, the height always attains a maximum in the

considered range of fluid density. Lang et al. [31] found indeed qualitatively similar

features in the variation of the structure factor of the equilibrium GCM fluid.

They also showed that the non-monotonic behaviour of the peak height is strictly

related to the re-entrant melting transition of the equilibrium GCM [31]. In the QA

system (see Figure 2) the increase of the matrix density tends to suppress fluid-

fluid correlations. This points to a key role of the matrix structure in frustrating

the crystallisation of the adsorbed fluid.

To gain a better understanding of the structural features apparent in Figure 1, it

is useful to compare the QA model with two reference equilibrium fluids at different

densities: The first at a density ρ = ρm, corresponding to the equilibrium fluid from

which the matrix configurations were quenched; The second at a density equal to

the total density of the QA system, i.e, ρ = ρf + ρm. Both reference fluids are

considered at the same temperature T = Tm = Tf . This procedure is similar to

the “generalised percolation approximation” used in Ref. [5] to describe the total

connected correlation function of QA hard-sphere models at moderate and high

porosity.1

1In the generalised percolation approximation, however, the density of the reference equilibrium fluid is

ρ = ρf/H(ρm), where H(ρm) is the Henry constant [5]. For a QA hard-sphere system, H measures the

fraction of volume available to the centre of a fluid particle adsorbed in a matrix of density ρm.
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In Figure 3 we compare the fluid-fluid correlations of the QA system to those

of the reference fluids for one selected state point (ρm = 0.1, ρf = 0.3, Tm =

Tf = 0.01). This state point is representative of the behaviour of the model at

intermediate matrix density and intermediate and high fluid densities (ρf & ρm).

The comparison reveals that the pre-peak of Sf f(k) appears exactly at the same

wave-vector as the main peak of S(k) of the equilibrium fluid at ρ = ρm. Hence, this

feature of the QA system originates in the properties of the equilibrium fluid from

which the matrix configurations were quenched. On the other hand, the position

of the main peak of Sf f(k) corresponds to the peak of S(k) of the equilibrium fluid

at density ρ = ρf + ρm. Indeed we found that the fluid-fluid radial distribution

function gf f(r) = hf f(r) + 1 (not displayed here) oscillates in phase with the g(r)

of the equilibrium fluid at ρ = ρm + ρf . Thus, it seems that the essential features

of Sf f(k) can be reasonably explained in terms of the typical emerging order of

equilibrium fluids, at least for not too low matrix density and ρf & ρm. At fluid

densities comparable to ρm this interpretation is no longer valid. In this latter case,

however, the distinction between pre-peak and main peak also becomes less clear

(see Figure 1). Finally, we note that, in the more general case in which fluid-fluid,

fluid-matrix, and matrix-matrix interactions differ, one should rather consider an

equilibrium mixture at density ρ = ρm + ρf as a reference fluid for the QA system,

with the two components having the appropriate chemical concentrations.
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as a function of k. The state points considered are ρm = 0.1, ρf = 0.3 (left panel) and ρm = 0.3, ρf = 0.5

(right panel), both at Tm = Tf = 0.01.

3.2. Role of blocked correlations

An even sharper interpretation of the structural features discussed above is achieved

by splitting Sf f(k) into its blocked and connected parts according to Equations (15)

and (16) [remember that Sf f(k) = Sb(k)+Sc(k)]. In Figure 4 we plot Sb(k), Sc(k),

Sf f(k), and Sfm(k) for two representative state points: ρm = 0.1, ρf = 0.3 (left

panel) and ρm = 0.3, ρf = 0.5 (right panel). A closer look at the data reveals

that in both cases the pre-peak can be fully ascribed to blocked correlations. In

fact, the position of the pre-peak in Sf f(k) coincides exactly with the first peak of

Sb(k). Moreover, the “double-peak” structure is absent in the connected part Sc(k).

Since the blocked structure factor accounts for correlations between fluid particles

mediated by at least one matrix particle [5], the results in Figure 4 confirm that

the pre-peak in Sf f(k) is an effect induced by the matrix structure on the fluid-fluid

correlations.

Figure 4 also shows that the solutions of the ROZ equations in combination

with the HNC closure overall are in good agreement with the simulation data,

but some discrepancies appear for Sb(k) and Sfm(k) (see left panel). In particular,

the relative discrepancy between the data sets in the case of blocked correlations
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becomes more pronounced for k values around and beyond the main peak position

in Sf f(k). In this case, the disagreement might not be charged entirely to the theory.

In fact, Meroni and coworkers [39] showed that real-space blocked correlations

determined from numerical simulations may be affected by a slowly decaying “self-

term”, which makes gb(r) inaccurate for r ≈ 0. We found that similar difficulties

are present in Fourier space in the asymptotic limit of large wave-vectors.1 To

overcome these problems we used the simple trick suggested in Ref. [39] for the r-

space representation of the correlation functions. The averages 〈ρf(k)〉 and 〈ρf(−k)〉
were evaluated during different parts of the simulation: while 〈ρf(k)〉 was calculated

during the first half, 〈ρf(−k)〉 was evaluated during the second half of the run.

Nonetheless, a fully accurate determination of blocked correlations from simulations

might still be hindered by finite-size effects, which we have not analysed yet in a

systematic way. Further work is probably needed to clarify this issue.

The observations we made in discussing Figure 3 and 4 agree with the consensus

on the strong influence of the matrix on the properties of the adsorbed fluid [3, 40].

We note, however, that in our model the effect of the matrix on fluid-fluid cor-

relations, which appears at low wave-vectors, is essentially “geometric” in nature.

We will argue below that the pre-peak in Sf f(k) is a more general feature of QA

models with purely repulsive fluid-matrix interactions. On the other hand, Krakovi-

ack et al. [40] observed a similar – yet much more pronounced – correlation peak

in Sf f(k) at low wave-vectors in a model of fluid adsorbed in highly porous aerogel.

They attributed such correlation peaks to the presence of attractive fluid-matrix

interactions, which caused fluid particles to coat the aerogel strands. Interestingly,

the different origin of the pre-peak in these models may be related to the shape

of Sfm(k). In our purely repulsive model, the pre-peak in Sf f(k) always occurs

at wave-vectors at which fluid-matrix correlations are suppressed. In contrast, in

the model aerogel of Ref. [40] fluid-matrix correlations were generally enhanced at

low k.

1The presence of a slowly decaying “self-term” in the blocked structure factors determined from simu-

lations can be seen by inserting the expression of the one-particle density ρf (k) [see Equation (12)] into

Equation (15). Contributions to the product in Equation (15) coming from equal particles at equal time

steps give rise to a term equal to 1/M in Sb(k), where M is the number of configurations used for averag-

ing. Moreover, 〈ρf (k)〉 determined from simulations is affected by statistical uncertainty, which shows up

as a positive background noise in Sb(k). These features prevent Sb(k) [as defined in Equation (15)] from

decaying fully to zero at very large k.
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Figure 5. Fluid-fluid Sf f(k), fluid-matrix Sfm(k), blocked Sb(k), and connected Sc(k) structure factors as

function of k. Results refer to MC simulations at different fluid temperatures Tf and at fixed Tm = 0.01.

The density of the matrix and the fluid are ρm = 0.1 and ρf = 0.3, respectively.

3.3. Temperature mismatch

So far, we considered only systems in which the temperature of the fluid, Tf , and

the temperature of the matrix, Tm, were equal.1 It is interesting to investigate the

respective roles of these parameters. The possibility of a temperature mismatch has

been noted in previous work [41], but an explicit assessment of its consequences

has not been carried out yet.

Let us first investigate the role of Tf at fixed Tm. The temperature evolution of

Sf f(k) obtained from MC simulations is shown in Figure 5 for the representative

state point ρm = 0.1, ρf = 0.3 (i.e., densities as in the left panel of Figure 4).

The increase in height of the main peak upon lowering Tf indicates a progressive

ordering of the fluid inside the matrix. In contrast, the pre-peak does not show

1Remember that Tm is the temperature of the equilibrium fluid from which we obtained the matrix

configurations, as described in Section 2.
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Figure 6. Fluid-fluid Sf f(k), fluid-matrix Sfm(k), blocked Sb(k), and connected Sc(k) structure factors as

function of k. Results refer to MC simulations at different matrix temperatures Tm and at fixed Tf = 0.01.

The density of the matrix and the fluid are ρm = 0.1 and ρf = 0.3, respectively.

any substantial variation upon cooling. Hence, the structural features observed

at low wave-vectors in our model cannot be simply understood in terms of the

formation of some intermediate-range order – similar to the one observed upon

cooling in network-forming liquids [42]. In the latter case, in fact, the peak at low

wave-vectors associated to intermediate-range order grows by decreasing T while

the height of the main peak decreases.

It is perhaps even more revealing to study the variation of the fluid structure

when Tm is changed at fixed Tf . In this way we can investigate in a controlled man-

ner the role of correlations in the matrix structure. The structure factors Sf f(k),

Sfm(k), Sc(k), and Sb(k) are shown in Figure 6 for the same selected state point of

Figure 4 and 5, but for two different values of Tm. Matrix configurations sampled at

high temperature (Tm = 0.1) alter the shape of the structure factors Sf f(k), Sfm(k),

and Sb(k), leading to a substantial rounding of the features at low wave-vectors in
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Figure 7. Structure factors of the equilibrium GCM fluid obtained from MC simulations at ρ = 0.1 for

T = 0.1 (dashed line) and T = 0.01 (solid line).

Sf f(k). Upon lowering Tm, correlations in the matrix structure are enhanced (see

the S(k) of the corresponding equilibrium fluids in Figure 7) and they affect more

strongly the structure of the fluid at low wave-vectors. On the other hand, the con-

nected part Sc(k), which describes fluid correlations not mediated by the matrix, is

essentially unaltered by changes in the matrix structure due to the different matrix

temperature. Hence, temperature mismatch between fluid and matrix represents

a simple tool to probe the sensitivity of fluid correlations to the underlying ma-

trix structure and to pin down the relevant wave-vectors at which matrix-induced

effects are more pronounced.

4. Discussion and conclusions

In this work we have analysed, using integral-equation theory and Monte Carlo

simulations, the structural properties of a model colloidal fluid imbibed in porous

confinement. The porous matrix consisted of quenched configurations of the same

colloidal fluid, i.e., particles with the same nominal diameter. While the matrix

structure we employed is unrealistic compared to typical porous materials con-

sidered in the literature (e.g., aerogels, vycor, controlled glasses), it might be ex-

perimentally realised by pinning particles at well-defined positions using optical

tweezers on colloidal suspensions [19, 43, 44]. Hence, the choice of a model that

describes the effective interactions between linear polymer chains represents a step

ahead towards closer contact between theory and experiment. Arguably, novel fea-

tures may also appear when soft matter is adsorbed in porous media.
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Some of the variations observed in the fluid structure factors when changing the

fluid density at constant matrix density resembled the behaviour of the equilibrium

GCM fluid. Specifically, the height of the main peak of Sf f(k) changed in a non-

monotonic fashion – a behaviour peculiar of soft matter for re-entrant solidification

scenario. On the other hand, we found a distinct correlation peak in Sf f(k) at

wave-vectors corresponding to the the main peak of the matrix-matrix structure

factor. Such a pre-peak was especially apparent at intermediate fluid densities and

was interpreted as an indirect effect of the matrix geometry. We argue now that

this feature is of more general nature and not specific of our model. First, from

preliminary, unpublished results we found a similar pre-peak structure in the same

model but with different values of size ratio λ = σf f/σfm (namely λ = 1.4 and

λ = 3.0). Second, a mismatch between the peak position of blocked and connected

structure factors in a QA system of hard spheres has been recently reported by

Krakoviack [38]. Indeed, our simulations for the QA hard-sphere model confirmed

the presence of a pre-peak in Sf f(k) for intermediate porosity. Finally, a correlation

peak in Sf f(k) has been observed at intermediate fluid densities in a model of fluid

adsorbed in a highly porous aerogel [40]. The latter model featured a fractal matrix

structure and attractive fluid-matrix interactions, utterly different from our model.

Our analysis has also highlighted the usefulness of blocked correlations in explain-

ing distinct features of structural properties of fluids adsorbed in porous media.

The work by Jean-Jacques Weis and coworkers [5, 8–12, 39, 45, 46] has provided a

deeper understanding of the properties of fluids in porous media in general and of

blocked correlation functions in particular, both from a theoretical and computa-

tional point of view. Our work indicates that more effort will be required to accu-

rately compute these correlations functions. This is crucial in the light of the key

role played by blocked and connected correlations in a novel formulation of Mode

Coupling theory for describing the dynamics of fluids in porous materials [38].
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