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We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation
for the calculation of the fluid-state properties of systems interacting by means of bounded and
positive pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of
a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same
systems. On the basis of this functional, we calculate analytically the freezing parameters of the
latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent
of density and whose value is dictated by the position of the negative minimum of the Fourier
transform of the pair potential. This property is equivalent with the existence of clusters, whose
population scales proportionally to the density. We establish that regardless of the form of the
interaction potential and of the location on the freezing line, all cluster crystals have a universal
Lindemann ratio L;=0.189 at freezing. We further make an explicit link between the aforementioned
density functional and the harmonic theory of crystals. This allows us to establish an equivalence
between the emergence of clusters and the existence of negative Fourier components of the
interaction potential. Finally, we make a connection between the class of models at hand and the
system of infinite-dimensional hard spheres, when the limits of interaction steepness and space
dimension are both taken to infinity in a particularly described fashion. © 2007 American Institute

of Physics. [DOI: 10.1063/1.2738064]

I. INTRODUCTION

Cluster formation in complex fluids is a topic that has
attracted considerable attention recently.l_10 The general be-
lief is that a short-range attraction in the pair interaction po-
tential is necessary to initiate aggregation and a long-range
repulsive tail in order to limit cluster growth and prevent
phase separation. An alternative scenario for cluster forma-
tion pertains to systems whose constituent particles interact
by means of purely repulsive potentials. Cluster formation in
this case is counterintuitive at first sight: Why should par-
ticles form clusters if there is no attraction acting between
them? The answer lies in an additional property of the effec-
tive repulsion, namely that of being bounded, thus allowing
full particle overlaps. Though surprising and seemingly un-
physical at first, bounded interactions are fully legitimate and
natural as effective potentials11 between polymeric macro-
molecular aggregates of low internal monomer concentra-
tion, such as polymers,n_14 dendrimers,ls’16 microg_;els,”_19
or coarse-grained block copolymers.zo’21 The growing inter-
est in this type of effective interactions is also underlined by
the recent mathematical proof of the existence of crystalline
ground states for such systems.zz’23

Cluster formation in the fluid and in the crystal phases
was explicitly seen in the system of penetrable spheres, fol-
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lowing early simulation results® and subsequent cell-model
calculations.” Cluster formation was attributed there to the
tendency of particles to create free space by forming full
overlaps. The conditions under which ultrasoft and purely
repulsive particles form clusters have been conjectured a few
years axgo26 and explicitly confirmed by computer simulation
very recently.27 The key lies in the behavior of the Fourier
transform of the effective interaction potential: for clusters to
form, it must contain negative parts, forming thus the class
of Q*-interactions. The complementary class of potentials
with purely nonnegative Fourier transforms, Q*, does not
lead to clustering but to remelting at high densities.”* ™ An
intriguing feature of the crystals formed by Q*-systems is the
independence of the lattice constant on de:r1sity,26’27 a feature
that reflects the flexibility of soft matter systems in achieving
forms of self-organization unknown to atomic ones.”**> The
same characteristic has recently been seen also in slightly
modified models that contain a short-range hard core.”® In
this work, we provide an analytical solution of the crystalli-
zation problem and of the properties of the ensuing solids
within the framework of an accurate density-functional ap-
proach. We explicitly demonstrate the persistence of a single
length scale at all densities and for all members of the
Q*-class and offer thus broad physical insight into the
mechanisms driving the stability of the clustered crystals. We
further establish some universal structural properties of all
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Q*-systems both in the fluid and in the solid state, justifying
the use of the mean-field density functional on which this
work rests. We make a connection between our results and
the harmonic theory of solids in the Einstein-approximation.
Finally, we establish a connection with suitably defined infi-
nite dimensional models of hard spheres.

The rest of this paper is organized as follows: In Sec. II
we derive an accurate density functional by starting with the
uniform phase and establishing the behavior of the direct
correlation functions of the fluid with density and tempera-
ture. Based on this density functional, we perform an ana-
lytical calculation of the freezing characteristics of the
Q=*-systems by employing a weak approximation in Sec. III.
The accuracy of this approximation is successfully tested
against full numerical minimization of the functional in Sec.
IV. In Sec. V the equivalence between the density functional
and the theory of harmonic crystals is demonstrated, whereas
in Sec. VI a connection is made with inverse-power poten-
tials. Finally, in Sec. VII we summarize and draw our con-
clusions. Some intermediate, technical results that would in-
terrupt the flow of the text are relegated in the Appendices.

Il. DENSITY-FUNCTIONAL THEORY
A. Definition of the model

In this work, we focus our interest on systems of
spherosymmetric particles interacting by means of bounded
pair interactions v(r) of the form

v(r) =e¢(r/0), (1)

with an energy scale € and a length scale o, and which fulfill
the Ruelle conditions for stability.37 In Eq. (1) above, ¢(x) is
some dimensionless function of a dimensionless variable and
r denotes the distance between the spherosymmetric par-
ticles. In the context of soft matter physics, v(r) is an effec-
tive potential between, e.g., the centers of mass of macromo-
lecular entities, such as polymer chains or dendrimers.'® As
the centers of mass of the aggregates can fully overlap with-
out this incurring an infinitely prohibitive cost in (free) en-
ergy, the condition of boundedness is fulfilled,

0=uv(r) <K, (2)

with some constant K.

The interaction range is set by o, typically the physical
size (e.g., the gyration radius) of the macromolecular aggre-
gates that feature v(r) as their effective interaction. In addi-
tion to being bounded, the second requirement to be fulfilled
by the function ¢(x) is that it decay sufficiently fast to zero
as x—, so that its Fourier transform ¢(y) exists. In three
spatial dimensions, we have

- * sin(yx
30)=4r [ a0 o
0 yx
and, correspondingly

(k) = e0 g(ko), 4)

for the Fourier transform (k) of the potential, evaluated at
wavenumber k. Our focus in this work is on systems for
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which (k) is oscillatory, i.e., v(r) features positive and nega-
. . O . . 726
tive Fourier components, classifying it as a Q*-potential.
Though this work is general, for the purposes of demonstra-
tion of our results, we consider a particular realization of
Q*-potentials, namely the generalized exponential model of
exponent m, (GEM-m)

v(r) =& exp| - (r/o)™"], (5)

with m=4. It can be shown that all members of the GEM-m
family with m>2 belong to the Q*-class, see Appendix A.

A short account of the freezing and clustering behavior
of the GEM-4 model has been recently published.27 Another
prominent member of the family is the m=% model, which
corresponds to penetrable sphereszms’38 with a finite overlap
energy penalty e. Indeed, the explicitly calculated phase be-
havior of these two show strong resemblances, with the
phase diagram of both being dominated by the phenomenon
of formation of clusters of overlapping particles and the sub-
sequent ordering of the same in periodic crystalline
arrangements.zs’38 In this work, we provide a generic, accu-
rate, and analytically tractable theory of inhomogeneous
phases of Q*-systems.

B. The uniform fluid

Let us start from the simpler system of a homogeneous
fluid, consisting of N spherosymmetric particles enclosed in
a macroscopic volume V. The structure and thermodynamics
of the system are determined by the density p=N/V and the
absolute temperature 7 or, better, their dimensionless coun-
terparts

p'=po’
and
ool
8 b

with Boltzmann’s constant k. As usual, we also introduce
for future convenience the inverse temperature S= (k7).
We seek for appropriate and accurate closures to the
Ornstein-Zernike relation™

W) =) [ @relle=rDi(r), ©

connecting the total correlation function A(r) to the direct

correlation function ¢(r) of the uniform fluid. One possibility

is offered by the hypernetted chain closure (HNC) that reads
39

as

h(r) = exp[— Bu(r) +h(r) - c(r)] -1. (7)

An additional closure, the mean-field approximation (MFA),
was also employed and will be discussed later.

Our solution by means of approximate closures was ac-
companied by extensive NVT-Monte Carlo (MC) simula-
tions. We measured the radial distribution function
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g(r)=h(r)+1 as well as the structure factor S(k)=1+ ph(k),

where h(k) is the Fourier transform of A(r), to provide an
assessment of the accuracy of the approximate theories. We
typically simulated ensembles of up to 3000 particles for a
total of 150 000 Monte Carlo steps. Measurements were
taken in every tenth step after equilibration.

In Fig. 1 we show comparisons for the function g(r) as
obtained from the MC simulations and from the HNC clo-
sure for a variety of temperatures and densities. It can be
seen that agreement between the two is obtained, to a degree
of quality that is excellent. Tiny deviations between the HNC
and MC results appear only at the highest density and for a
small region around r=0 for low temperatures, 7°=0.5. Oth-
erwise, the system at hand is described by the HNC with an
extremely high accuracy and for a very broad range of tem-
peratures and densities. We note that, although in Fig. 1 we
restrict ourselves to temperatures 7%= 2.0, the quality of the
HNC remains unaffected also at higher temperaturf:s.26

In attempting to gain some insight into the remarkable
ability of the HNC to describe the fluid structure at such a
high level of accuracy, it is useful to recast this closure in
density-functional language. Following the famous Percus
idea,” ™ the quantity pg(r) can be identified with the non-
uniform density p(r) of an inhomogeneous fluid that results
when a single particle is kept fixed at the origin, exerting an
“external” potential V., (r)=v(r) on the rest of the system.
Following standard procedures from density functional
theory, we find that the sought-for density profile p(r) is
given by

SBF el p]
sp(r) )’

where A is the thermal de Broglie wavelength, u the chemi-
cal potential associated with average density p, and tempera-
ture 7. Moreover, F.[p] is the intrinsic excess free energy, a
unique functional of the density p(r). As such, F.,[p] can be
expanded in a functional Taylor series around its value for a
uniform liquid of some (arbitrary) reference density p,. For
the problem at hand, py=p is a natural choice and we
obtain**

p(r) = A7 exp) Bu— Bu(r) - (8)

o 1
IBFex[p]=:8Fex(p)_E _‘ff ...fd3r1d3r2...d3rn

n=1 1

T,3p)
xAp(r;)Ap(ry) ... Ap(r,). ©)

where F.(p) denotes the excess free energy of the homoge-
neous fluid, as opposed to that of the inhomogeneous fluid,
Felp], and

Ap(x) = p(x) - p. (10)

The basis of the expansion given by Eq. (9) above is the fact
that F.,[p] is the generating functional for the hierarchy of
the direct correlation functions (DCF) cg’). In particular,
-5 lcg') is the nth functional derivative of the excess free
energy with respect to the density field, evaluated at the uni-

form density p,44’45

XCSH)(rl,rz,
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FIG. 1. Radial distribution functions g(r) of the GEM-4 model as obtained
by Monte Carlo simulation (points), the HNC-closure (solid lines) and the
MFA (dashed lines), at various temperatures and densities. For clarity, the
curves on every panel have been shifted upwards by certain amounts, which
are given below in square brackets, following the value indicating the den-
sity p*. (a) T°=0.5 and densities, from bottom to top: p*=0.5 [0]; p*=1.0
[0.2]; p*=1.5 [0.4]; p*=2.0 [0.6]; p*=2.5 [0.8]. (b) T*=1.0 and densities,
from bottom to top: p*=1.0 [0]; p*=2.0 [0.2]; p*=3.0 [0.4]; p*=4.0 [0.6];
p"=5.0[0.8]. (c) T"=2.0 and densities, from bottom to top: p*=2.0 [0]; p*
=4.0 [0.2]; p*=6.0 [0.4]; p*=8.0 [0.6]; p*=10.0 [0.8].

’ril;p)

B 8'BFu[p]
8p(r1)dp(ra) ... 3p(r,) | o y=p

As the functional derivatives are evaluated for a uniform

cé")(rl,rz,

(11)
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system, translational and rotational invariance reduce the
number of variables on which the nth order DCF cg’) depend;
in fact, c(()l)(r 1;p) is a position-independent constant and
equals —Bu.,, where u., is the excess chemical potential.45
Similarly, cf)z)(r 1,T2;p) is simply the Ornstein-Zernike direct
correlation function c(|r;—r,|) entering in Egs. (6) and (7)
above. The HNC closure is equivalent to jointly solving Egs.
(6) and (8) by employing an approximate excess free energy
functional F_[ p], arising by a truncation of the expansion of
Eq. (9) at n=2, i.e., discarding all terms with n=3; this is
the famous Ramakrishnan-Yussouff second-order
21ppr0ximation.46’47 Indeed, the so-called bridge function b(r)
can be written as an expansion over integrals involving as
kernels all the cg’) with =3 and the HNC amounts to set-
ting the bridge function equal to zero. 4348

Whereas in many cases, such as the one-component
plasma,49’50 and other systems with long-range interactions,
the HNC is simply an adequate or, at best, a very good ap-
proximation, for the case at hand the degree of agreement
between the HNC and simulation is indeed extremely high.
What is particularly important is that the accuracy of the
HNC persists for a very wide range of densities, at all tem-
peratures considered. This fact has far-reaching conse-
quences, because it means that the corresponding profiles
p(x) that enter the multiple integrals in Eq. (9) vary enor-
mously depending on the uniform density considered. Thus,
it is tempting to conjecture that for the systems under con-
sideration (soft, penetrable particles at 7°= 1), not simply the
integrals with n=3 vanish but rather the kernels themselves.
In other words,

cg”)(rl,rz, ...,I‘n;p)EO, (n23). (12)

The behavior of the higher-order DCF is related to the
density-derivative of lower-order ones through certain sum
rules, to be discussed below. Hence, it is pertinent to exam-
ine the density dependence of the DCF ¢(r) of the HNC. In
Fig. 2 we show the difference between the DCF cyne(r) and
the mean-field approximation (MFA) to the same quantity

empalr) == Bu(r). (13)

Equation (13) above is meaningless if the pair potential v(r)
diverges as r— 0, because c¢(r) has to remain finite at all r, as
follows from exact diagrammatic expansions of the same.”
In fact, the form c¢(r)~—Bv(r) denotes the large-r
asymptotic behavior of ¢(r). In our case, however, where
v(r) lacks a hard core, the MFA-form for c(r) cannot be a
priori rejected on fundamental grounds; the quantity —Bv(r)
remains bounded as »— 0. In fact, as can be seen in Fig. 2,
the deviations between the MFA and the HNC-closure are
very small for 7%= 1. In addition, the differences between
cunc(r) and cypa(r) drop, both in absolute and in relative
terms, as temperature grows, see the trend in Figs. 2(a)-2(c).
At fixed temperature, the evolution of the difference with
density is nonmonotonic: it first drops as density grows and
then it starts growing again at the highest densities shown in
the three panels of Fig. 2.

Motivated by these findings, we employ now a second
closure, namely the above-mentioned MFA, Eq. (13). Intro-
ducing the latter into the Ornstein-Zernike relation, Eq. (6),
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FIG. 2. The main plots show the difference between the direct correlation
function c¢(r) calculated in the HNC and its MFA-approximation, c(r)=
—Bu(r), for a GEM-4 model, at various densities indicated in the legends.
The insets show the MFA approximation for the same quantity, which is
density-independent. Each panel corresponds to a different temperature: (a)
T°=0.5; (b) T°=1.0; and (c) T#=2.0. These are exactly the same parameter
combinations as the ones for which g(r) is shown in Fig. 1.

we obtain the MFA-results for the radial distribution function
g(r) that are also shown in Fig. 1 with dashed lines. Before
proceeding to a critical comparison between the g(r) ob-
tained from the two closures, it is useful to make a clear
connection between the MFA and the HNC.

As mentioned above, the members of the sequence of the
nth-order direct correlation functions are not independent
from one another; rather, they are constrained to satisfy a
corresponding hierarchy of sum rules, namely“z“ﬂ_53
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3 n+l .
fd rkc(g )(rb RS VAP Y2 VAP 7rn+17P)

— ﬁC(gn)(l‘], oo D15 g1 - »rn+l;p) (14)
dap '
In particular, for n=2, we have
f d3r’c83)(r,r’, r- r’|;p)
delr;
=fd3r’c53)(r’,r, r’—r|;p)=%, (15)
P

where we have used the translational and rotational invari-
ance of the fluid phase to reduce the number of arguments of
the DCF and we show explicitly the generic dependence of
c(r) on p. In the MFA, one assumes c(r)=—Bv(r), with the
immediate consequence

ac(r) _

p 0. (16)

Equations (15) and (16) imply that the integral of 083) with
respect to any of its arguments must vanish for arbitrary
density. As cff) has a complex dependence on its arguments,
this is a strong indication that cff) itself vanishes. In fact,
both for the Barrat-Hansen-Pastore factorization approxima-
tion for this quantitySI’52 and for the alternative, Denton-
Ashcroft k-space factorization of the same,> the vanishing of
the right-hand side of Eq. (15) implies that ¢}’ =0. Now, if
c(()3) vanishes, so does also its density derivative and use of
sum rule (14) for n=3 implies c§)4)=0. Successive use of the
same for higher n-values leads then to the conclusion that in
the MFA

(n=3). (17)

cé")(rl,rz, ,rn;p) =0,

We can now see that the accuracy of the HNC stems from the
fact that for these systems we can write

c(r) == Bu(r) +&(rip), (18)

where e(r;p) is a small function at all densities p, offering
concomitantly a very small, and the only, contribution to the
quantity dc(r)/dp. This implies that CE)S) itself is negligible by
means of Eq. (15). Repeated use of Eq. (14) leads then to
Egs. (12) and shows that the contributions from the n>2
terms, that are ignored in the HNC, are indeed negligible.
The HNC is, thus, very accurate, due to the strong mean-field
character of the fluids at hand.>* The deviations between the
HNC and the MFA come through the function &(r;p) above.

Let us now return to the discussion of the results for g(r)
and c(r) and the relative quality of the two closures at vari-
ous thermodynamic points. Referring first to Fig. 1(c), we
see that at 7°=2.0 both the HNC and the MFA perform
equally well. The agreement between the two (and between
the MFA and MC) worsens somewhat at 7°=1.0 and even
more at 7°=0.5. The MFA is, thus, an approximation valid
for T"=1, in agreement with previous results.”® The reason
lies in the accuracy of the low-density limit of the MFA. In
general, as p—0, c(r) tends to the Mayer function f(r)

J. Chem. Phys. 126, 224502 (2007)

=exp[-Bv(r)]-1.If T*= 1, one may expand the exponential
to linear order and obtain f(r) =—pBuv(r), so that the MFA can
be fulfilled.

In the HNC, it is implicitly assumed that all DCF with
n=3 vanish. In the MFA, this is also the case. The two
closures differ in one important point, though, in the HNC,
the second-order direct correlation function is not prescribed
but rather determined, so that both the “test-particle equa-
tion,” Eq. (8), and the Ornstein-Zernike relation, Eq. (6), are
fulfilled. In the MFA, it is a priori assumed that c(r)=
—Bu(r), which is introduced into the Ornstein-Zernike rela-
tion and thus A(r) is determined. This is one particular way
of obtaining g(r) in the MFA, called the Ornstein-Zernike
route. Alternatively, one could follow the test-particle route
in solving Eq. (8) in conjunction with Eq. (9) and the MFA-
approximation, Eq. (13). In this case, the resulting expres-
sion for the total correlation function A(r) in the MFA reads
as

h(r) =exp[- Bv(r) - Bp(h+v)(r)] -1, (19)

with * denoting the convolution. Previous studies with ultra-
soft systems have shown that the test-particle A(r) from the
MFA is closer to the HNC-result than the MFA result ob-
tained from the Ornstein-Zernike route.” The discrepancy
between the two is a measure of the approximate character of
the MFA; were the theory to be exact, all routes would give
the same result. As a way to quantify the approximations
involved in the MFA, let us attempt to impose consistency
between the test-particle and Ornstein-Zernike routes. Since
c(r)==PBuv(r) in this closure, the exponent in Eq. (19) above
is just the right-hand side of the Ornstein-Zernike relation,
Eq. (6). Thus, if we insist that the latter is fulfilled, we obtain
the constraint

h(r)=explh(r)] -1, (20)

which is strictly satisfied only for 4(r)=0. However, as long
as |h(r)| <1, one can linearize the exponential and an iden-
tity follows; the internal inconsistency of the MFA is of qua-
dratic order in A(r) and it follows that the MFA provides an
accurate closure for the systems at hand, as long as |h(r)|
remains small. This explains the deviations between MFA
and MC seen at small r for the highest density at 7"=2.0,
Fig. 1(c). The same effect can also be seen in Fig. 2(c) as a
growth of the discrepancy between cync(r) and cypa(r) at
small r-values for the highest density shown. In absolute
terms, however, this discrepancy remains very small. Note
also that discrepancies at small r-values become strongly
suppressed upon taking a Fourier transform, due to the addi-
tional geometrical r>-factor involved in the three-
dimensional integration.

It can, therefore, be seen that the MFA and the HNC are
closely related to one another: The HNC is so successful due
to the strong mean-field character of the systems under con-
sideration. This fact has also been established and exten-
sively discussed for the case of the Gaussian model,zg’56 i.e.,
the m=2 member of the GEM-m class. Once more, the HNC
and the MFA there are very accurate for high densities and/or
temperatures, where i(r) =0 and the system’s behavior de-

RS . a 29 .
velops similarities with an “incompressible ideal gas,”” in
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FIG. 3. The structure factor S(k) of the GEM-4 model at temperature 7°
=1.0 and various densities, indicated below. For clarity, the curves have
been shifted vertically by amounts shown in the square brackets, following
the numbers that indicate the values of the density p*. From bottom to top:
p"=1.0 [0]; p*=2.0 [0.5]; p*=3.0 [1.0]; p"=4.0 [1.5]; p*=5.0 [2.0]. The
points are results from Monte Carlo simulations and the dashed lines from
the HNC. As the HNC- and MFA-curves run very close to each other, we
show the MFA-result by the solid curve only for the highest density, p*
=5.0.

full agreement with the remarks presented above. Subse-
quently, the MFA and HNC closures have been also success-
fully applied to the study of structure and thermodynamics of
binary soft mixtures.”®"!

A crucial difference between the Gaussian model, which
belongs to the Q*-class, and members of the Q*-class, which
are the subject of the present work, lies in the consequences
of the MFA-closure on the structure factor S(k) of the sys-
tem. Since c¢(r)=—Buv(r), the Ornstein-Zernike relation leads
to the expression

1
S(k) = 1+ Bpo(k)

Whereas for Q*-potentials S(k) is devoid of pronounced
peaks that exceed the asymptotic value S(k—o)=1, for
O*-systems a local maximum of S(k) appears at the value k.,
for which (k) attains its negative minimum. In Fig. 3 we
show representative results for the system at hand, where it
can also be seen that the HNC and the MFA yield practically
indistinguishable results. In full agreement with the MC
simulations, the location of the main peak of S(k) is density-
independent, a feature unknown for usual fluids, having its
origin in the fact that c(r) itself is density independent.

Associated with this is the development of a A-line,
also known as Kirkwood instability,64 on which the denomi-
nator in Eq. (21) vanishes at k., and thus S(k,) — . The locus
of points (p,,T)) on the density-temperature plane for which
this divergence takes place is, evidently, given by

21

60-63

T, -
2= _ Bko). (22)
P

In the region p=p, (equivalently: T=T,) on the

(p,T)-plane, the MFA predicts that the fluid is absolutely
unstable, since the structure factor there has multiple diver-
gences and also develops negative parts. This holds only for
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Q*-systems; for Q*-ones the very same line of argumentation
leads to the opposite conclusion, namely that the fluid is the
phase of stability at high densities and/or temperatures. The
latter conclusion has already been reached by Stillinger and
co-workers®>™® in  their pioneering work of the Gaussian
model in the mid-1970s, and explicitly confirmed by exten-
sive theory and computer simulations many years later.”8~33
However, Stillinger’s original argument was based on duality
relations that are strictly fulfilled only for the Gaussian
model, whereas the MFA-arguments are quite general.

The MFA is closely related but not identical to the ran-
dom phase approximation (RPA) in the terminology of
Andersen and Chandler’®"* and of Wheeler and Chandler.”®
Although the relationship c(r)=—Buv(r) is satisfied by both
the MFA and the RPA, the difference lies in the treatment
of the term —V~'3, ., In(S(K)) in the notation of Ref. 73
[not the same as the structure factor S(k)]. On these grounds,
the catastrophe caused by this term, which was established in
Ref. 73 for the macrophase separation of a binary mixture, is
absent in the MFA. The A-line mentioned above is rather
akin to the spinodal line of Wheeler and Chandler, albeit for
finite k. As it is fully preempted by a first-order freezing
transition, it is not physically observable and can be thought
of as an artifact of the MFA which signals the instability of
the fluid. The HNC-closure fails to converge before the MFA
N-line is reached and in regions in which the system is al-
ready frozen, thus no statement about the existence of a
A-line in the HNC can be made.

C. Nonuniform fluids

Having established the validity of the MFA for vast do-
mains in the phase diagram of the systems under consider-
ation as far as the uniform fluids are concerned, we now turn
our attention to nonuniform ones. Apart from an obvious
general interest in the properties of nonuniform fluids, the
necessity to consider deviations from homogeneity in the
density for Q*-models is dictated by the \-instability men-
tioned above: The theory of the uniform fluid contains its
own breakdown, thus the system has to undergo a phase
transformation to a phase with a spontaneously broken trans-
lational symmetry. Whether this transformation takes place
exactly on the instability line or already at densities p<<p,
(or temperatures 7>T,) and which is the stable phase are
some of the questions that have to be addressed. The density-
functional theory of inhomogeneous systems is the appropri-
ate theoretical tool in this direction.

Let us consider a path p,(r) in the space of density func-
tions, which is characterized by a single parameter y; this
path starts at some reference density p,(r) and terminates at
another density p(r). The uniqueness of the excess free en-
ergy functional and its dependence on the inhomogeneous
density field p(r) allow us to integrate JF,,[p]/dy along this
path, obtaining F.[p], provided that F.[p,] is known. A
convenient parametrization reads as p,(r)=p,(r)+x[p(r)
—p(r)], with =0 corresponding to p,(r) and y=1 to p(r).
The excess free energy of the final state can be expressed

45
as
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rlol=srln)- [ axf el Dot
(23)

where c(l)(r;[px]) denotes the first functional derivative of
the quantity —BF.,[p] evaluated at the inhomogeneous den-
sity p,(r), and Ap(r)=p(r)-p,(r). Since ¢V(r;[p,]) is in its
own turn a unique functional of the density profile, repeated
use of the same argument leads to a functional Taylor expan-
sion of the excess free energy around that of a reference
system, an expansion that extends to infinite order. For the
particular choice of a uniform reference system, p,(r)=p, we
obtain then the Taylor series of Eq. (9). In general, however,
the reference system does not have to have the same average
density as the final one, hence the uniform density p there
must be replaced by a more general quantity p,.

The usefulness of Eq. (9) in calculating the free energies
of extremely nonuniform phases, such as crystals, is limited
both on principal and on practical grounds. Fundamentally,
there is no small parameter guiding such an expansion, since
the differences between the nonuniform density of a crystal
and that of a fluid are enormous; the former has extreme
variations between lattice- and interstitial regions. Hence, the
very convergence of the series is in doubt.** In practice, the
direct correlation functions for n=3 are very cumbersome to
calculate™ and those for n=4 are practically unknown.**
The solution is either to arbitrarily terminate the series at
second order® or to seek for nonperturbative
functionals.**”>™*° In our case, however, things are different
because, for the systems we consider, we have given evi-
dence that the DCF of order n>2 are extremely small and
we take them at this point as vanishing. Then, the functional
Taylor expansion of the free energy F,[p] terminates (to the
extent that the approximation holds) at second order. The
Taylor series becomes a finite sum and convergence is not an
issue any more.

Let us, accordingly, expand F[p] around an arbitrary,
homogeneous reference fluid of density py=N,/V, taking
into account that the volume V is fixed but the system with
density p(r) contains N particles, whereas the reference fluid
contains N, particles and, in general, N # N,

L) =Bl -6 (o) [ @p(w) -]

_%ffd3rd3r’c32)(|r—r’|;po)[P(r)—Po]

X[p(x") = pol. (24)

Using cgz)(r;po)zcéz)(r) =c(r)=—Bv(r) and the sum rule
(14) for n=1 together with the vanishing of the excess
chemical potential at zero density, we readily obtain

c§P(po) = - B5(0) py. (25)

Formally substituting in Eq. (24), p— 0 and p(r) — p, and
making use of the fact that the excess free energy of a system
vanishes with the density, we also obtain the dependence of
the fluid excess free energy on the density
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N,
BFe(po) = 7‘)&7(0):30, (26)

with the particle number N, of the reference fluid and the
Fourier transform (k) of the interaction potential. Introduc-
ing Egs. (25) and (26) into the Taylor expansion, Eq. (24)
above, we obtain

BFalp]= %ﬂﬁ(O)po +B(0)po(N = No)
B[ [ @rtrolle-rDate)ote)
o [ rrolle e )o(r)

+ %ﬁﬁ(o) po- (27)

Introducing x=r—-r’ the fourth term above becomes

| @role) [ (i) = paa0).  29)

Now the sum of the first, second, fourth, and fifth term in Eq.
(27) yields

N N
~ B5(0)py+ B5(0)po(N = No) = BNpyi(0) + = A5(0)py

_ N, N,
= IBU(O){TOPO +po(N = No) = Npy + 70130

= B5(0)[Nopo + po(N = No) = Npy] = 0. (29)

This is a remarkable cancellation because then only the third
term in Eq. (27) survives and we obtain

rlol=4 [ [ @rrule- Do), Go

which is our desired result.***

The derivation above demonstrates that the excess free
energy of any inhomogeneous phase for our ultrasoft fluids is
given by Eq. (30), irrespectively of the density of the refer-
ence fluid p,. This is particularly important because, usually,
functional Taylor expansions are carried out around a refer-
ence fluid whose density lies close to the average density of
the inhomogeneous system (crystal, in our case). However,
in our systems this is impossible. The crystals occur pre-
dominantly in domains of the phase diagram in which the
reference fluid is meaningless, because they are on the high
density side of the A-line. It is, therefore, important to be
able to justify the use of the functional and to avoid the
inherent contradiction of expanding around an unstable fluid.
In practice, of course, the higher-order DCF do not exactly
vanish, hence deviations from result (30) are expected to
occur, in particular at low temperatures and densities. Nev-
ertheless, the comparisons with simulations, e.g., in Refs. 26,
27, and 60 fully justify our approximation.

A mathematical proof of the mean-field character for flu-
ids with infinitely long-range and infinitesimally strong re-
pulsions has existed since the late 1970s, see Refs. 81 and
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82. However, even far away from fulfillment of this limit,
and for conditions that are quite realistic for soft matter sys-
tems, the mean-field behavior continues to be valid.?62%°
The mean-field result of Eq. (30) has been put forward for
the Gaussian model at high densities,”” on the basis of physi-
cal argumentation: in the absence of diverging excluded-
volume interactions, at sufficiently high densities any given
particle sees an ocean of others—the classical mean-field
picture. The mean-field character of the Gaussian model for
moderate to high temperatures was demonstrated indepen-
dently in Ref. 56. Here, we have provided a more rigorous
justification of its validity, based on the vanishing of high-
order direct correlation functions in the fluid. It must also be
noted that the mean-field approximation has recently been
applied to a system with a broad shoulder and a much shorter
hard-core interaction, providing good agreement with simu-
lation results®® and allowing for the formulation of a gener-
alized clustering criterion for the inhomogeneous phases.
An astonishing similarity exists between the mean-field
functional of Eq. (30) and an exact result derived for infinite-
dimensional hard spheres. Indeed, for this case Frisch et
al.¥ as well as Bagchi and Rice®” have shown that

pralpl =4[ [ raorstle—eDonte). 61

where D— and f([r-r’'|) is the Mayer function of the
infinite dimensional hard spheres. Again, one has a bilinear
excess functional whose integration kernel does not depend
on the density; in this case, this is minus the (bounded)
Mayer function whereas for mean-field fluids, it is the inter-
action potential itself, divided by the thermal energy kg7. In
fact, the Mayer function and the direct correlation function
coincide for infinite-dimensional systems and higher-order
contributions vanish there as well,*’ making the analogy with
our three-dimensional, ultrasoft systems complete. Accord-
ingly, infinite dimensional hard spheres have an instability at

some finite k at the density p,, given by p,f(k)=1. This
so-called Kirkwood instability64 is of the same nature as our
N-line but hard hyperspheres are athermal, so it occurs at a
single point on the density axis and not a line on the density-
temperature plane. Following Kirkwood’s work,® it was
therefore arguedgs’87 that hard hyperspheres might have a
second-order freezing transition at the density p, expressed
as

p. = 0.239(e/8)P" exp| zo(D/2) D", (32)

where the limit D —o must be taken and z;,=1.8558 is the
value of the minimum of the Bessel function Jp,(z) as D
— o, Note that p, — 0 as D — e, Later on, Frisch and Percus
argued that most likely the Kirkwood instability is never en-
countered because it is preempted by a first-order freezing
transition.®® In what follows, we will show analytically that
this is also the case for our systems, which might provide a
finite-dimensional realization of the above-mentioned math-
ematical limit.
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lll. ANALYTICAL CALCULATION OF THE FREEZING
PROPERTIES

As mentioned above, an obvious candidate for a spa-
tially modulated phase is a periodic crystal. The purpose of
this section is to employ density-functional theory in order to
calculate the freezing properties. Under some weak, simpli-
fying assumptions, the problem can be solved analytically.

Adding the ideal contribution to the excess functional of
Eq. (30), the free energy of any spatially modulated phase is
obtained as

Flp]=Fulp]l+ Fulp]

k7| Erple)p(r)A] 1]
o3 [ ot - Donte). 33

As we are interested in crystalline phases, we parametrize the
density profile as a sum of Gaussians centered around the
lattice sites {R}, forming a Bravais lattice. In sharp contrast
with systems interacting by hard, diverging potentials, how-
ever, the assumption of one particle per lattice site has to be
dropped. Indeed, it will be seen that Q* systems employ the
strategy of optimizing their lattice constant by adjusting the
number of particles per lattice site, n., at any given density p
and temperature 7. Accordingly, we normalize the profiles to
n. and write

o\ R
p(r) =n, - e = % p(r-R), (34)

R

where the occupation variable n. and the localization param-
eter a have to be determined variationally, and the lattice site
density p,(r) is expressed as

o 3/2 N
Pl(r)=”c<;) e (35)

Contrary to crystals of single occupancy, thus, the number of
particles N and the number of sites N, of the Bravais lattice
do not coincide. In particular, it holds

N
A 36
v =T (36)

A
and we are interested in multiple site occupancies, i.e., n,
>1 or even n,>1; it will be shown that this clustering sce-
nario indeed minimizes the crystal’s free energy.
It is advantageous, at this point, to express the periodic
density profile of Eq. (34) as a Fourier series, introducing the
Fourier components pg of the same

p(r) =2 e®7py, (37)
K

where the set {K} contains all reciprocal lattice vectors
(RLVs) of the Bravais lattice formed by the set {R}. Accord-
ingly, the inverse of (37) reads as*®
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1 ) 1 -
PK = v_f d3relK'rP(l‘) = v_f dsrelK'rPI(r)’ (38)
eJe ¢

where the first integral extends over the elementary unit cell
C of the crystal and v.=V/N, is the volume of C, containing
a single lattice site. The second integral extends over all
space, where use of the periodicity of p(r) and its expression
as a sum over lattice site densities, Eq. (34), has been made.
Using Eq. (35) we obtain

= e k(40 _ pe—KZ/(4a). (39)
vC

PK

Note that the site occupancy n,. does not appear explicitly in
the functional form of the Fourier components of p(r), a
feature that may seem paradoxical at first sight. However, for
fixed density p and any crystal type, the lattice constant and
thus also the reciprocal lattice vectors K are affected by the
possibility of clustering, thus the dependence on n, remains,
albeit in an implicit fashion. With the density being ex-
pressed in reciprocal space, the excess free energy takes a
simple form that reads as

Fo PN - —K%(2a)
— == K @), 40
N =g (K (40)

The ideal term, F,4[ p], can also be approximated analytically,
provided that the Gaussians centered at different lattice sites
do not overlap. Let a denote the lattice constant of any par-
ticular crystal. Then, for aa®> 1, the ideal free energy of the
crystal takes the form

F, 3 a\ 5 A
b=1nnc+—1n<a—)——+3ln<—), (41)
N 2 2 o

T

where the trivial last term will be dropped in what follows,
since is also appears in the expression of the free energy of
the fluid and does not affect any phase boundaries. Putting
together Eqgs. (40) and (41), we obtain a variational free en-

ergy per particle, f, for the crystal, that reads as

Fid+Fex

Ve = f(n.,a";T",p")

= T*[ln ne+ 3 1n<£> - é]
2 T 2
P23 3y ), )
27y

where o= ao? and Y =Ko. In the list of arguments of f the
first two are variational parameters whereas the last two de-
note simply its dependence on temperature and density. The
free energy per particle, f,,(T",p") = F/(Ne) of the crystal is

obtained by minimization of f, ie.,
fsol(T*’p*) = mH} f(nc’a*;T*’p*)- (43)

In carrying out the minimization, it proves useful to
measure the localization length of the Gaussian profile, ¢
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=1/, in units of the lattice constant a instead of units of
o. To perform this change, we first express the average den-
sity p of the crystal in terms of n. and a as

T, (44)

]

p:

[o%)

a

where z is a lattice-dependent numerical coefficient of order
unity. We now introduce the quantity aa’=vy"'. Using Eq.
(44) above, we obtain

*\ 2/3
a*=y_1( P ) . (45)

n,

This change of variables is just a mathematical transforma-
tion that simplifies the mathematics to follow; all results to
be derived maintain their validity also in the original repre-
sentation. For a further discussion of this point, see also Ap-
pendix B.

Next we make the simplifying approximation to ignore
in the sum over reciprocal lattice vectors on the right-hand-
side of Eq. (42) above all the RLVs beyond the first shell,
whose length is Y =K, 0. This is justified already because of
the exponentially damping factors exp[-Y?/(2a®)] in the
sum. In addition, the coefficients |(Y)| themselves decay to
zero as Y — oo, with an asymptotic behavior that depends on
the form of ¢(x) in real space. The length of the first shell of
RLVs of any Bravais lattice of lattice constant a scales as
K,={/a, with some positive, lattice-dependent numerical
constant { of order unity. Together with Egs. (44) this implies
that the length of the first RLV depends on the aggregation

number 7, as
113
) , (46)

Y,(n.) = z(

and using Eq. (45), we see that the ratio Y%/ (2a®) takes a
form that depends solely on the parameter vy, namely

O
2a* 2

*
p
n.

(47)

Introducing Egs. (45) and (47) into (42), we obtain another
functional form for the variational free energy,
f(ng,y;T*, p"), expressed in the new variables. It can be seen
that upon making the transformation (45), the term
%ln[(a*/rr)] delivers a contribution minus In n, that exactly
cancels the same term with a positive sign on the right-hand
side of Eq. (42). Accordingly, the only remaining quantity of
the variational free energy that still depends on n, is the
length of the first nonvanishing RLV, Y;, whose n. depen-
dence is expressed by Eq. (46) above. Putting everything
together, we obtain

fn,y;Tp") =T Inp* = 1- %[ln(yw) +1]-Inz
1.2 &p' - -y
+ 507 8(0) + == (¥ (ne) ),

(48)

where &, is the coordination number of the reciprocal lattice.
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Minimizing j_r with respect to n, is trivial and using Eq. (47)
we obtain

L_0= g (r)ri=o, (49)

dn,
where the prime denotes the derivative with respect to the
argument. Evidently, Y, coincides with y,=k,o, the dimen-
sionless wavenumber for which the dimensionless Fourier
transform of the interaction potential attains its negative
minimum. The other mathematical solution of (49), ¥,=0,
can be rejected because it yields nonpositive second deriva-
tives or, on physical grounds, because it corresponds to a
crystal with n,— %, whose occurrence would violate the
thermodynamic stability of the system. Regarding second de-
rivatives, it can be easily shown that

77
—]; >0 (50)
an Y,=y,

and

77
| o (51)
ayana Yl:V

irrespective of 7.

Having shown the coincidence of Y; with y,, we set
&(Y,)=(y,) <0 in Eq. (48) above. Further, we notice that
the term T[In p*—1] on the right-hand side of Eq. (48) gives
the ideal free energy of a uniform fluid of density p* and the
term p*¢h(0)/2 the excess part of the same, see Eq. (26).
Subtracting, thus, the total fluid free energy per particle,
fu(T*,p*), we introduce the difference Af=jf-f, which
reads as

Zlnz]

< 3T"
Af(n(y.), v:T".p") = - —{ln(wr) +1+ 3

2

* &zp* B(y.)e ", (52)

The requirement of no overlap between Gaussians centered
on different lattice sites restricts vy to be small; a very gen-
erous upper limit is y=0.05. For such small values of v, the
first term on the right-hand side of Eq. (52) above is positive.
This positivity expresses the entropic cost of localization that
a crystal pays, compared to the fluid in which the delocalized
particles possess translational entropy. This cost must be
compensated by a gain in the excess term, which is only
possible if ¢(y,)<0. An additional degree of freedom is of-
fered by the candidate crystal structures. The excess free
energy is minimized by the direct Bravais lattice whose re-
ciprocal lattice has the maximum possible coordination num-
ber &;. The most highly coordinated periodic arrangement of
sites is fcc, for which &, =12. Therefore, in the framework of
this approximation, the stable lattice is bcc. It must be em-
phasized, though, that these results hold as long as only the
first shell of RLVs is kept in the excess free energy. Inclusion
of higher-order shells can, under suitable thermodynamic
conditions, stabilize fcc in favor of bec. We will return to this
point later.
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Choosing now a as the edge-length of the conventiornal
lattice cell of the bcc-lattice, we have z=2 and (=272
Evidently, the lattice constant of the crystal is density-
independent, a/o= (2\677)/ Y., contrary to the case of usual
crystals, for which a>p™/3. The density-independence of a
is achieved by the creation of clusters that consist of n. par-
ticles, each of them occupying a lattice site. The proportion-
ality relation connecting 7, and p* follows from Eq. (46) and
reads as

-
n.= Swiﬂjp*. (53)

*

It remains to minimize f (equivalently, Af) with respect to y
to determine the free energy of the crystal. We are interested,
in particular, in estimating the “freezing line,” determined by
the equality of free energies of the fluid and the solid.¥ Ac-
cordingly, we search for the simultaneous solution of the
equations

of
—=0, 54
3y (54)
Af=0, (55)
resulting into
37" 2p*
—+ §lﬁdiy*)e‘%z/2 =0 (56)
2y 4
and
. 37" 21
%%(y*)e-%"”z - 7[1“(7”) +le Z} .6

Substituting (57) into (56) and using z=2 and {=2\2m, we
obtain an implicit equation for y that reads as

21n2]

'y'1=—4772[1n(y77)+ 1+ (58)
and has two solutions, y;=0.018 and y,=0.038. Due to
(50) and (51), the sign of the determinant of the Hessian
matrix at the extremum is set by the sign of #f/dy*; Using
Eqgs. (56)-(58) we obtain

7f_3T

v - 2y
which is positive for y=1, but negative for y=1,. Only the
first solution corresponds to a minimum and thus to freezing,
whereas the second is a saddle point. Within the limits of the
first-RLV-shell approximation, the crystals formed by
Q*-potentials feature thus a universal localization parameter
at freezing: irrespective of the location on the freezing line
and even of the interaction potential itself, the localization
length ¢ at freezing is a fixed fraction of the lattice constant

and the parameter y=(aa®)™! attains along the entire crystal-
lization line the value

¥ = 0.018. (60)

(y'-4), (59)

We can understand the physics behind the constancy of the
ratio €/a by examining anew the variational form of the free
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energy, Eq. (42). Suppose we have a fixed density p* and we

vary n., seeking to achieve a minimum of f. An increase in
n. implies an increase in the lattice constant a by virtue of
Eq. (44). The density profile takes advantage of the addi-
tional space created between neighboring sites and becomes
more delocalized. This increase of the spreading of the pro-
file brings with it an entropic gain which exactly compen-
sates the corresponding loss from the accumulation of par-
ticles on a single site, expressed by the term In n, in Eq. (42).
Expressing € in units of «, i.e., working with the variable y
instead with the original one, «", brings the additional ad-
vantage that 7, becomes independent of the pair potential.
The corresponding value of o™ at freezing, a;, can be ob-
tained from Egs. (44) and (53), and reads for the bce-lattice
as

P
f 87 v
Here, a dependence on the pair interaction appears through
the value of y..

Complementary to the localization parameter, we can
consider the Lindemann ratio L at freezing,90’91 taking into
account /t_hat for the bec lattice the nearest neighbor distance
is d=a\3/2. Employing the Gaussian density parametriza-
tion, we find (+*)=3/(2a) and thus L= m/dz V2. Using
(60), the Lindemann ratio at freezing, Ly, is determined as

(61)

Ly=0.189. (62)

This value is considerably larger than the typical value of
0.10 usually quoted for systems with harshly repulsive par-
ticles, such as, e.g., the bcc alcali metals and the fcc metals
Al, Cu, Ag, and Au (Shapiro), but close to the value 0.160
found by Stillinger and Weber® for the Gaussian core model.
The particles in the cluster crystal are quite more delocalized
than the ones for singly occupied solids. The clustering strat-
egy enhances the stability of the crystal with respect to os-
cillations about the equilibrium lattice positions.

The locus of freezing points (7}, py) is easily obtained by
Egs. (57) and (58) and takes the form of a straight line

LpR YA B0 le ™ = 1.393|3(y.)]. (63)

Py

Contrary to the Lindemann ratio, which is independent of the
pair potential, the freezing line does depend on the interac-
tion potential between the particles. Yet, this dependence is a
particular one, as it rests exclusively on the absolute value of
the Fourier transform at the minimum, |(y,)| and is simply
proportional to it. Comparing with the location of the \-line
from Eq. (22), Ty/py=|4(y.)|, we find that crystallization
preempts the occurrence of the instability: indeed, at fixed
T", p; <p), or, equivalently, at fixed p*, T;>T); see also Fig.
4. The transition is first-order, as witnessed by the jumps of
the values of « and pg at the transition, which are nonzero
for the crystal but vanish in the fluid. This is analogous to the
conjectured preemption of the Kirkwood instability for
infinite-dimensional hard spheres by a first-order freezing
transition.*®
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FIG. 4. The phase diagram of the GEM-4 model, obtained by full minimi-
zation of the density functional (33), under the Gaussian parametrization of
the density, Eq. (34), redrawn from Ref. 27. On the same plot, we show by
the dotted line the approximate analytical result for the freezing line, Eq.
(63), as well as the \-line of the system, Eq. (22).

The freezing properties of Q*-potentials are, thus, quite
unusual and at the same time quite simple: The lattice con-
stant is fixed due to a clustering mechanism that drives the
aggregation number 7, proportional to the density. The con-
stant of proportionality depends solely on the wavenumber
v. for which the Fourier transform of the pair interaction has
a negative minimum, Eq. (53). The freezing line is a straight
line whose slope depends only on the value of the Fourier
transform of the potential at the minimum, Eq. (63). The
Lindemann ratio at freezing is a universal number, indepen-
dent of interaction potential and thermodynamic state.

Whereas the Lindemann ratio is employed as a measure
of the propensity of a crystal to melt, the height of the peak
of the structure factor of the fluid is looked upon as a mea-
sure of the tendency of the fluid to crystallize. The Hansen-
Verlet criterion’*® states that crystallization takes place
when this quantity exceeds the value 2.85. For the systems at
hand, the maximum of S(y) lies at y,, as is clear from Eq.
(21). Using Eq. (63) for the location of the freezing line, we
obtain the value Sy(y.) on the freezing line as

B(y.)
1.393]3(y.)]

This value is considerably larger than the Hansen-Verlet
threshold.”*”* In the fluid phase, Q*-systems can therefore
sustain a higher degree of spatial correlation before they
crystallize than particles with diverging interactions do. This
property lies in the fact that some contribution to the peak
height comes from correlations from within the clusters that
form in the fluid; the formation of clusters already in the
uniform phase is witnessed by the maxima of g(r) at r=0
seen in Fig. 1 and also explicitly visualized in our previous
simulations of the model.”’ These, however, do not contrib-
ute to intercluster ordering that leads to crystallization. At
any rate, the Hansen-Verlet peak height is also a universal
quantity for all Q% systems, in the framework of the current
approximation. Moreover, both for the Lindemann and for

SAy.)=|1+ = 3.542. (64)
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the Hansen-Verlet criteria, the Q* systems are more robust
than usual ones, since they allow for stable fluids with peak
heights that exceed 2.85 by 25% and for stable crystals with
Lindemann ratios that exceed 0.10 by almost 90%.

IV. COMPARISON WITH NUMERICAL MINIMIZATION

The density functional of Eq. (33) is very accurate for
the bounded ultrasoft potentials at hand.****”°" The mod-
eling of the inhomogeneous density as a sum of Gaussians is
an approximation but, again, an accurate one, as has been
shown by comparing with simulation results,”” see also V of
this work. The analytical results derived in the preceding
section rest on one additional approximation, namely on ig-
noring the RLVs beyond the first shell. Here, we want to
compare with a full minimization of the functional (33) un-
der the modeling of the density via (34), so as to test the
accuracy of the hitherto drawn conclusions on clustering and
crystallization.

We work with the concrete GEM-4 system, for which
the minimization of the density functional has been carried
out and the phase diagram has been calculated in Ref. 27. In
Fig. 4 we show the phase diagram obtained by the full mini-
mization, compared with the freezing line from the analytical
approximation, Eq. (63), for this system. It can be seen that
the latter is a very good approximation to the full result, its
quality improving slowly as the temperature grows; the ana-
lytical approximation consistently overestimates the region
of stability of the crystal. Moreover, whereas the approxima-
tion only predicts a stable bcc crystal, the high-density phase
of the system is fcc. Although bee indeed is, above the triple
temperature, the stable crystal immediately post-freezing, it
is succeeded at higher densities by a fcc lattice, which our
analytical theory fails to predict.

All these discrepancies can be easily understood by
looking at the effects of ignoring the higher RLV shells from
the summation in the excess free energy, Eq. (42). Consider
first exclusively the bec lattice. In Fig. 5 we show the loca-
tions of the bce-Vs, as obtained from the full minimization,
by the downwards pointing arrows. It can be seen that the
first shell is indeed located very closely to y-, as the analyti-
cal solution predicts. However, the next two RLV shells do
have contributions and, due to their location on the hump of
&(y), the latter is positive. By ignoring them in performing
the analytical solution, we are artificially lowering the free
energy of the crystal, increasing thereby its domain of stabil-
1ty.

The occurrence of a fcc-lattice that beats the bee at high
densities is only slightly more complicated to understand. A
first remark is that the parameter o increases proportionally
to p*/ T", see the following section. Hence, the Gaussian fac-
tors from RLVs beyond the first shell, exp[—Y?/ 2a"], i
=2, gain weight in the sum as density grows. The cutoff for
the RLV-sum is now provided rather by the short-range na-
ture of (y) than by the exponential factors. Due to the in-
creased importance of the contributions from the i =2-terms
in the excess free energy sum, the relative location of higher
RLVs becomes crucial and can tip the balance in favor of
fcc, although the bece-lattice has a higher number of RLVs in
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FIG. 5. Inset: The Fourier transform ¢(y) of the GEM-4 potential. Main

plot: a zoom at the region of @(y) in which the first few nonvanishing RLV
shells of the cluster-crystals of Fig. 4 lie. The arrows denote the positions of
the shells and the numbers in square brackets the numbers of distinct RLVs
within each shell. These positions are the result of the full minimization of
the density functional. Downwards pointing arrows pertain to the direct bce
lattice and upwards pointing arrows to the direct fcc one. In agreement with
clustering predictions, the positions of the RLVs are density-independent.

its first shell than the fcc. In Fig. 5 we see that this is pre-
cisely what happens: the second RLV shell of the fcc is lo-
cated fairly close to the first. In the full minimization, both of
them arrange their positions so as to lie close enough to y,.
Now, a total of fourteen first- and second-shell RLVs of the
fcc can beat the twelve first-shell RLVs of the bee and bring
about a structural phase transformation from the latter to the
former.

The relative importance of the first and second neighbors
is quantified by the ratio

- %%GXF’[— (v3-v}2a")], (65)

where &, is the number of RLVs in the second shell. If &(y)
does not decay sufficiently fast to zero as y grows, then the
fcc lattice might even win over the bcc everywhere, since
then A could be considerable even for values of a* close to
freezing, which are not terribly high. In fact, the penetrable
sphere model (GEM-m with m— ) does not possess, on
these grounds, a stable bcc phase at all.” The prediction of
the analytical theory on bcc stability has to be taken with
care and is conditional to A being sufficiently small. A quan-
titative criterion on the smallness of A is model specific and
cannot be given in general. The determination of the stable
phases of the GEM-m family and their dependence on m can
be achieved by employing genetic algorithms94 and will be
presented elsewhere.

Notwithstanding the quantitative discrepancies between
the simplified, analytically tractable version of DFT and the
full one, which are small in the first place, the central con-
clusion of the former remains intact: the RLVs of the crystals
are density-independent. Whereas the analytical approxima-
tion predicts that the length of the first RLV shell coincides
with y., the numerical minimization brings about small de-
viations from this prediction. However, by reading off the
relevant values from Fig. 5, we obtain Y, =5.625 for the bcc
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and Y,=5.441 for the fcc-lattice of the GEM-4 model. Com-
paring with the ideal value y.=5.573, we find that the devia-
tion between them is only a few percent. Clustering takes
place, so that the lattice constants of both lattices remain
fixed, a characteristic that was also explicitly confirmed by
computer simulations of the model.”’

V. CONNECTION TO HARMONIC THEORY OF
CRYSTALS

The use of a Gaussian parametrization for the one-
particle density profiles, Eq. (34), is a standard modeling of
the latter for periodic crystals. This functional form is closely
related to the harmonic theory of crystals.88 Each particle
performs oscillations around its lattice site, experiencing
thereby an effective, one-particle site potential, Vg.(s) that is
quadratic in the displacement s, for small values s/ a’® Here,
we will explicitly demonstrate that the Gaussian form with
the localization parameter predicted from density functional
theory coincides with the results obtained by performing a
harmonic expansion of the said site potential.

The formation of clustered crystals is a generic property
of all Q*-systems, since the N-instability is common to all of
them; the form of the clusters that occupy the lattice sites,
however, can be quite complex, depending on the details of
the interaction. The Gaussian parametrization (34) implies
that for each of the n, particles of the cluster, the lattice site
R is an equilibrium position. In other words, the particular
clusters we consider here are internally structureless. Clus-
ters with a well-defined internal order have been found when
an additional hard core of small extent is introduced.”® A
necessary requirement for the lack of internal order is that
the Laplacian of the interaction potential v(r) be finite at r
=0, as will be shown shortly. On these grounds, we impose
from the outset on the interaction potential the additional
requirement

1
Vu(r) =5 (' (1) < for r—0, (66)
r

where the primes denote the derivative with respect to r.
Equation (66) implies that v’(r) must be at least linear in r as
r— 0. Concomitantly, v”(r) must be at least O(1) as r—0.
As a consequence, we have

v"(r) - v'(r)

’
It can be easily checked that (67) is satisfied by all members
of the GEM-m class for m>2. It is also satisfied by the m
=2 member, i.e., the Gaussian model, which does nort display
clustering because it belongs to the Q*-class. This is, how-
ever, no contradiction. As mentioned above, the condition
(67) is necessary for the formation of structureless clusters
and not a sufficient one. For Q*-potentials for which (67) is
not fulfilled (such as the Fermi distribution models of Ref.
26), this does not mean that clusters do not form; it rather
points to the fact that they possess some degree of internal
order.

The clustered crystals can be considered as Bravais lat-
tices with a n-point basis. Accordingly, their phonon spec-

— 0 for r—0. (67)
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trum will feature three acoustic branches and 3(n,— 1) optical
branches, for which the oscillation frequency w(k) remains
finite as k— 0. We are interested in the case n.>1, i.e., deep
in the region of stability of the crystal, where the clusters
have a very high occupation number. Consequently, the pho-
non spectra and the particle displacements will be dominated
by the optical branches. Further, we simplify the problem by
choosing, in the spirit of the Einstein model of the crystal,88
one specific optical phonon with k=0 as a representative for
the whole spectrum. This mode corresponds to the relative
partial displacement of two sublattices: One with n.—1 par-
ticles on each site and one with just the remaining one par-
ticle per site. The two sublattices coincide at the equilibrium
position and maintain their shape throughout the oscillation
mode, consistent with the fact of an infinite-wavelength
mode, k=0. Accordingly, the site potential felt by any one of
the particles of the single-occupied sublattice, V;.(s), can be
expressed as

Vie(s) = (n, - 1>[v<s) + 3 olls —R|>], (68)

where s is the relative displacement of the two sublattices.
For brevity, we also define

Wsite(s) = ‘;SL_(Sl)' (69)

The Taylor expansion of a scalar function f around a refer-
ence point r reads as

flr+s)=f(r) +s-Vf(r) + %(s V)?f(r)+ . (70)

Setting r —0 and f— W, we obtain the quadratic expan-
sion of the site potential; the constant V.(0) is unimportant.
For the linear term, we have

VWeelr=0)=v' (Do + S v’ (R)R, (71)
R#0

where r and R are unit vectors. The sum in (71) vanishes due
to lattice inversion symmetry; the first term also, since
v'(0)=0. Thus, the term linear in s in the expansion of
V() vanishes, consistently with the fact that s=0 is an
equilibrium position.

We now introduce Cartesian coordinates and write r
=(x,y,2), s=(sy,5y,5,), and R=(R,R,,R;). The quadratic
term in (70) takes the explicit form

s & s

) + 5,8 + 5.5
Yoxay TCdydz Fazax

+ l(szﬁ +s2i+s2i>. (72)
Yy z

Let us consider first the mixed derivative acting on W (r),
evaluated at r=0. Using Egs. (69) and (68), we obtain

1
—(s-V)*=s
1)
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&ZWsite(r) — {Q<v"(r) _ v’(r >:|
oxdy |0 r r r=0

+2 v(R)

R#0

[ "(R) - } (73)

The first term on the right-hand side of (73) vanishes by
virtue of (67). The second one also vanishes due to the cubic
symmetry of the lattice. Clearly, the other two terms in (72)
with mixed derivatives vanish as well. For the remaining
terms, the cubic symmetry of the lattice implies that all three
second partial derivatives of W;, at r=0 are equal

ﬁstite(r)
ax2 r=0

&ZWsite(r)
&yz

ﬁstite(r)

972

r=0

(74)

1
= gvzwsite(r)

r=0 r=0

Gathering the results, we obtain the expansion of V.(s) to
quadratic order in s as

Vals) = Va0) + [(” b=ty e, (R>] 3

which is isotropic in s, as should for a crystal of cubic sym-
metry. The one-particle motion is therefore harmonic; as we
consider n,>> 1, we set n,.—1=n, in (75) and we obtain the
effective, one-particle Hamiltonian H; in the form
2
H1=p—+l<s2, (76)
2m

with
k="3 V%(R), (77)
6%

and the momentum p and mass m of the particle. The density
profile p;(r) of this single-particle problem is easily calcu-
lated as (5(r—s))Hl, yielding

3/2
pl(l') = (18_7:> e_ﬁkrz. (78)

This is indeed a Gaussian of a single particle, with a local-
ization parameter «;,=[k; the total density on a given site
will be then just n.p(r), in agreement with the functional
form put forward in Eq. (34).

It is useful to consider in detail the form of the localiza-
tion parameter ¢, predicted by the harmonic theory. The pa-
rameter x is expressed as a sum of the values of (r)
=V?u(r) over the periodic set {R}. For every function #(r)

that possesses a Fourier transform J/(k), it holds®®
> UR) =p, 2 WK), (79)
R K

where {K} is the set of RLVs of {R} and p,=N,/V is the
density of lattice sites of {R}. From (36), p,n.=p. Taking
into account that the Fourier transform of Vv (r) is —k*5(k),
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we obtain for the localization parameter of the harmonic
theory the result

P> k%(k). (80)

T kTS

The localization parameter must be, evidently, positive.
Equation (80) manifests the impossibility for cluster forma-
tion if the Fourier transform of the pair potential is nonnega-
tive, i.e., for Q% interactions. In the preceding section, we
showed within the DFT formalism that if the potential is Q*,
this implies the formation of cluster crystals. Harmonic
theory allows us to make the opposite statement as well: If
the potential is not Q, then there can be no clustered crys-
tals. Therefore, an equivalence between the Q* character of
the interaction and the formation of clustered crystals can be
established. Moreover, Eq. (80) offers an additional indica-
tion as to why the RLV where 0(K) is most negative is se-
lected as the shortest nonvanishing one by the clustered crys-
tals: This is the best strategy in order to keep the localization
parameter positive.

Harmonic theory provides, therefore, an insight into the
necessity of locating the first shell of the RLVs at k. from a
different point of view than density functional theory does.
The choice K;=k- guarantees that the particles inhabiting
neighboring clusters provide the restoring forces that push
any given particle back toward its equilibrium position. The
density functional treatment of the preceding sections estab-
lishes that the lattice constant is chosen by Q*-systems in
such a way that the sum of intracluster and intercluster in-
teractions, together with the entropic penalty for the aggre-
gation of n,. particles is optirnized.95 The unlimited growth of
n. is avoided by the requirement of mechanical stability of
the crystal. Indeed, for too high n -values, the lattice constant
would concomitantly grow, so that the resulting restoring
forces working against the thermal fluctuations, would be-
come too weak to sustain the particles at their equilibrium
positions.

Let us, finally, compare the result (80) for the localiza-
tion parameter with the prediction from DFT. We consider
the high-density crystal phase, for which «" is very large, so
that the simplification that only the first shell of RLVs can be

kept in (42) must be dropped. Setting Jf/da*=0 there, we
obtain

31 p 27 -r4(24")

St (2a*)2§‘ Y2d(Y)e =0. (81)
The function ¢(y) is short-ranged in reciprocal space, thus
the sum in (81) can be effectively truncated at some finite
upper cutoff Y. Then, there exists a sufficiently large density
p* beyond which the parameter o is so large that
Y?/(2a*) < 1 for all Y=Y, included in the summation. Ac-
cordingly, we can approximate all exponential factors with
uniti in (81), obtaining an algebraic equation for a*. Revert-
ing back to dimensional quantities, its solution reads as

6kBT%‘, K% (K), (82)

and is identical with the result from the harmonic theory,
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Eq. (80). Thus, density functional theory and harmonic
theory become identical to each other at the limit of high
localization. This finding completes and generalizes the re-
sult of Archer,”> who established a close relationship be-
tween the mean-field DFT and the Einstein model for the
form of the variational free energy functional of the system.

Consistently with our assumptions, « indeed grows with
density. In fact, since the set of RLVs in the sum of (82) is
fixed, it can be seen that « is simply proportional to p/T.
This peculiar feature of the class of systems we consider is
not limited to the localization parameter, and its significance
is discussed in the following section.

VI. CONNECTION WITH INVERSE-POWER
POTENTIALS

As can be easily confirmed by the form of the density
functional of Eq. (33), the mean-field nature of the class of
ultrasoft systems considered here (both Q*- and
Q*-potentials) implies that the structure and thermodynamics
of the systems is fully determined by the ratio p*/ T between
density and temperature and not separately by p* and T
This is a particular type of scaling between the two relevant
thermodynamic variables, reminiscent of the situation for
systems interacting by means of inverse-power-law poten-
tials v(r) having the form

v(r):s(g)n. (83)

r

For such systems, it can be shown that their statistical me-
chanics is governed by a single coupling constant I'(n) ex-
pressed as’’

I'p(n) = #, (84)

where D is the space dimension. It would appear that
inverse-powers n=D satisfy precisely the same scaling as
mean-field systems do but there is a condition to be fulfilled:
inverse-power systems are stable against explosion, provided
that n> D; this can be most easily seen by considering the
expression for the excess internal energy per particle, u(p,T),
given by39

272 pe o

(D/2) - 1] f rD_l_”g(r;p,T)dr. (85)

M(P’T) [

As g(r)—1 for r—o, we see that the integral in (85) con-
verges only if n>D; a logarithmic divergence results for n
=D. A ‘uniform neutralizing background’ has to be formally
introduced for n = D, to obtain stable pseudo one-component
systems, such as the one-component plasma.‘“’)’so’98 Since we
aim at staying with genuine one-component systems
throughout, we must strictly maintain n>D.

Instead of taking the limit n— D, we consider therefore a
different procedure by setting

n=D+ 6, (86)

with some arbitrary, finite 6>0. Then the coupling constant
I'p(n) becomes
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Tp(D+ ) =p (1) L+ DT, (87)

Now take D — in this prescribed fashion, obtaining

*

lim (D + 8) = &=

lim =t (88)

which has precisely the same form as the coupling constant
of our systems. In taking the limit D— o, the exponent n
=D+ 6 of the inverse-power potential diverges as well. It can
be easily seen that in this case, the interaction v(r) of Eq.
(83) becomes a hard-sphere potential of diameter o. In other
words, the procedure prescribed above brings us once more
to infinite-dimensional hard spheres, because also the
inverse-power interaction becomes arbitrarily steep. This is a
very different way of taking the limit than in Refs. 85-87:
There, the interaction is hard in the first place and subse-
quently the limit D —< is taken, whereas here, interaction
and dimension of space change together, in a well-prescribed
fashion.

The fact that the statistical mechanics of ultrasoft fluids
in three dimensions is determined by the same dimensionless
parameter as that of a particular realization of hard spheres in
infinite dimensions is intriguing. In a sense, ultrasoft systems
are effectively high-dimensional, since they allow for ex-
tremely high densities, for which every particle interacts with
an exceedingly high number of neighbors. They might, in
this sense, provide for three-dimensional approximate real-
izations of infinite-dimensional models. This is yet another
relation to infinite-dimensional systems, in addition to the
one discussed at the end of Sec. II. Whether there exists a
deeper mathematical connection between the two classes, re-
mains a problem for the future.

VIl. SUMMARY AND CONCLUDING REMARKS

We have provided a detailed analysis of the properties of
bounded, ultrasoft systems, with emphasis on the Q*-class of
interaction potentials. After having demonstrated the sup-
pression of the contributions from the high-order direct cor-
relation functions of the fluid phases (of order 3 and higher),
we established as a consequence the accurate mean-field
density-functional for arbitrary inhomogeneous phases.
Though this functional has been introduced and successfully
used in the recent past both in statics”**"*9%! and in
dynamics,99 a sound justification of its basis on the properties
of the uniform phase was still lacking.

The persistence of a single, finite length scale for the
lattice constants of the ensuing solids of Q*-systems has
been understood by a detailed analysis of the structure of the
free energy functional. In the fluid, the same length scale
appears since the position of maximum of the liquid structure
factor is independent of density. The negative minimum of
the interaction potential in Fourier space sets this unique
scale and forces in the crystal the formation of clusters,
whose population scales proportionally with density. The
analytical solution of an approximation of the density func-
tional is checked to be accurate when confronted with the
full numerical minimization of the latter. Universal Linde-
mann ratios and Hansen-Verlet values at crystallization are
predicted to hold for all these systems, which differ substan-
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tially from those for hard matter systems. The analytical deri-
vation of these results provides useful insight into the robust-
ness of these structural values for an enormous variety of
interactions.

Though the assumption of bounded interactions has been
made throughout, recent results®® indicate that both cluster
formation and the persistence of the length scale survive
when a short-range diverging core is superimposed on the
ultrasoft potential, provided the range of the hard core does
not exceed, roughly, 20% of the overall interaction range.36
The morphology of the resulting clusters is more complex, as
full overlaps are explicitly forbidden; even the macroscopic
phases are affected, with crystals, lamellae, inverted lamellae
and “inverted crystals” showing up at increasing densities.
The generalization of our density functional theory to such
situations and the modeling of the nontrivial, internal cluster
morphology is a challenge for the future. Here, a mixed den-
sity functional, employing a hard-sphere and a mean-field
part of the direct correlation function seems to be a promis-
ing way to proceed.l’6 Finally, the study of the vitrification,
dynamical arrest and hopping processes in concentrated
Q=*-systems is another problem of current interest. The recent
“computer synthesis” of model, amphiphilic dendrimers that
do display precisely the form of Q*-interactions discussed in
this work,'? offers concrete suggestions for the experimental
realization of the hitherto theoretically predicted phenomena.
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APPENDIX A: PROOF THAT THE GEM-m MODELS
WITH m>2 ARE Q*-POTENTIALS

Consider the inverse Fourier transform of the spherically
symmetric, bounded pair potential v(r), reading as

1 (” sin kr
=—| Kolk dk
v(r) 2772J0 U( ) kr

(A1)

From (A1), it is straightforward to show that the second de-
rivative of v(r) at r=0 takes the form

= f k*o(k)dk.

Evidently, if v"(r=0)=0, then 0(k) must have negative parts
and hence v(r) is Q*. For the GEM-m family, it is easy to
show that v”(r=0)=0 for m > 2, thus these members are in-
deed QF, as stated in the main text. Double-Gaussian poten-
tials of the form

o(0) = oy e~ -

with |g,|>|e,|, o> 0,, which feature a local minimum at

v"(r=0) (A2)

|e,|e=CTo2)2) (A3)
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r=0 are also Q%, for the same reason. Notice, however, that
v"(r=0)=0 is a sufficient, not a necessary condition for
membership in the Q*-class. Thus, there exist Q*-potentials
for which v"(r=0) <0.

APPENDIX B: PROOF OF THE EQUIVALENCE
BETWEEN THE VARIATIONAL FREE ENERGIES

f AND f

The introduction of the new variable 7 instead of o', Eq.
(45), and the subsequent new form f of the variational free
energy, Eq. (48), are just a matter of convenience, which
makes the minimization procedure more transparent. A free
gift of the variable transformation is also the ensuing diago-
nal form of the Hessian matrix at the extremum. Fully
equivalent results are obtained, of course, by working with

the original variational free energy, 1. Eq. (42). Here we ex-
plicitly demonstrate this equivalence.
Keeping, consistently, only the first shell of RLVs with

length Y, f takes the form
3 (o
(nC,Cl T*p) T*|:ll’ll’l +Eln< ) :|+— (O)

* &T%(Yl)e‘y?’(“*), (B1)

where Y, and n, are related via Eq. (47). Minimizations of f
with respect to n,. and a* yield, respectively

G| ag(r) v, ]—Yf/(za"‘)_
== [ o) (1) e =0 (B2

and

fl” L (v rie ) <o, (B3)

Subtracting the last two equations from one another we ob-
tain

f”’ SEF (r)y,e 1) <, (B4)

implying Y, =y,, as in the main text (once more, ¥,=0 is a
formal solution that must be rejected on the same grounds
mentioned in the text). From this property, Eq. (53) immedi-

ately follows. Introducing AfE]?— Jfiigp We can determine aj’f
on the freezing line by requiring the simultaneous satisfac-

tion of the minimization conditions above and of Asz. The
latter equation yields

3 * ~ *
p 2 T 2
(BS)
which, together with Eq. (B3), yields, after some algebra

* 23 20t
ol ()] -2
m/\p Vi

Using Egs. (45) and (46), we obtain the equation for the
Yfparameter at freezing as

(B6)
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= (B7)

~[In(z3ym) + 1] =
YL

which, upon setting z=2 and ¢ =2\2m, yields Eq. (58) of the
main text. Alternatively, we can introduce the variable
1=a;/ y2 and rewrite Eq. (B6) as

In[(8v2)*3mt] - 1=21, (B8)

which delivers r=0.704 as a solution or, equivalently, ¢
=(87yy)~!, in agreement with Eqgs. (60) and (61) of the
main text.
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