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Soft core thermodynamics from self-consistent hard core fluids
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In an effort to generalize the self-consistent Ornstein-Zernike approximation (SCOZA)—an
accurate liquid state theory that has been restricted so far to hard core systems—to arbitrary soft
core systems we study a combination of SCOZA with a recently developed perturbation theory. The
latter was constructed by Ben-Amotz and Stell [J. Phys. Chem. B 108, 6877 (2004)] as a
reformulation of the Weeks-Chandler-Andersen [J. Chem. Phys. 54, 5237 (1971)] perturbation
theory directly in terms of an arbitrary hard sphere reference system. We investigate the accuracy of
the combined approach for the Lennard-Jones fluid in comparison with simulation data and pure
perturbation theory predictions and determine the dependence of the thermodynamic properties and
the phase behavior on the choice of the effective hard core diameter of the reference system. © 2006
American Institute of Physics. [DOI: 10.1063/1.2363385]

I. INTRODUCTION

In its most general formulation, the self-consistent
Ornstein-Zernike approximation'> (SCOZA) can be ob-
tained from a chosen liquid state theory by the introduction
of an adjustable parameter (such as an effective temperature)
and the subsequent imposition of consistency between two
different routes to thermodynamics, typically the energy and
compressibility routes. Simple as this prescription is, it has
nevertheless proven to be highly effective and to lead to very
accurate predictions for structure and thermodynamics
throughout the temperature-density plane, and for the critical
point and phase coexistence, in particular.‘l_7 Indeed, SCOZA
is one of only very few liquid state theories that do not de-
velop serious problems in the critical region and even exhibit
some form of scaling with non-classical, partly Ising-like
critical exponents.8

While this is by no means inherent to the concept of
SCOZA, applications to continuum fluids have been re-
stricted in a number of ways for both historical and practical
reasons: Originally the theory grew out of the semianalytic
solution of the mean spherical approximation (MSA) for
hard core Yukawa potentials. Correspondingly, SCOZA has
so far only been used with a MSA-like closure and with
potentials composed of a hard core of diameter o and an
attractive tail v,(r), a situation we will refer to as the “hard-
attractive” (HA) one. As far as v, is concerned, the original
restriction to a single Yukawa term® has gradually been re-
laxed, first by expanding the class of admissible tails to su-

perpositions of two’ or more Yukawa terms,'*
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for which semianalytic results are also available, only to be
fully overcome through the introduction of a fully numerical
solution of the Ornstein-Zernike (OZ) equation.12 Approxi-
mation of v,(r) as the superposition of a rather small number
of Yukawa or Sogami-Ise tails—a nontrivial step for some of
the artificial model potentials used in liquid state theory, e.g.,
the square well one—is thus no longer necessary, and it be-
comes possible to use exactly the same interaction as the
simulations one may want to compare with. Not surprisingly,
the flexibility so gained comes at substantial computational
cost in solving the SCOZA partial differential equation
(PDE).

Despite this liberation of the form of the attractive tail,
application of SCOZA has so far remained tied to a hard core
reference fluid (marked by subscript H) with potential

+o forr<oy
u(r) = (1)
0 for r > oy.

Only in the case of a bounded interaction, e.g., the Gaussian
one, u(r)xexp(—ar?), has the reference system effectively
been eliminated by letting o go to zero formally.13 But this
is not an option for simple liquids where the potential di-
verges for r— 0, such as the classic Lennard-Jones (LJ) one,
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For this or more specific systems the infinitely strong hard
core repulsion vy(r) present in SCOZA is hardly realistic. It
is therefore desirable to generalize the theory to largely arbi-
trary, strong but soft short-range repulsion vg(r) to which a
weak attractive tail v,(r) is again added to obtain the full
“soft-attractive” (SA) system,

Usa(r) = Ur) = us(r) + vy(r). 3)

Just as in an approximate SA-SCOZA recently proposed
that relies on the virial theorem to gauge the amplitude of the
pair distribution function (PDF) at the molecular sulrface,14 in
the present contribution we also opt for the time-honored
strategy of representing the soft repulsive core by hard
spheres of state dependent diameter. We therefore need ex-
plicit prescriptions for both the state dependence of this di-
ameter and for any correction terms that may be needed to
account for the softness of the reference fluid. In doing so
there is considerable latitude, and many different schemes
have been proposed and used in the past.ls’16 For example,
the highly successful first order perturbation theory due to
Weeks, Chandler, and Anderson'’ (WCA) solves both of
these problems by determining oy as a function of the tem-
perature T=kp/3 and the particle density p such that the
Helmbholtz free energies of the soft core reference system and
the hard spheres coincide. Determination of the diameter is
then rather involved and leads to a dependence not only on
temperature but also on density. Even though it has been
argued that p dependent oy is fundamentally more
appropriate,18 the practical advantages of a simple prescrip-
tion that depends on temperature only often outweigh a slight
loss in accuracy. Presumably this accounts for much of the
lasting popularity of the Barker-Henderson (BH) theory ac-
cording to which oy(B) is computed as"

on(B) = f (1= ePsO)r. ()
0

In this context a recent first order perturbation theory
due to Ben-Amotz and Stell'®? (BAS) is of particular inter-
est: While WCA consider a general reference system that is
in turn mapped onto an effective hard sphere fluid to which
attractions are then added, BAS start from a pure hard sphere
reference fluid instead ands add two terms to the free energy
to account for vg and vy, respectively. This hard core WCA,
or BAS, theory has been shown to yield results of an accu-
racy comparable to that of the original WCA theory while
being insensitive to the precise choice of oy. This makes it
possible to use an even simpler temperature dependence of
the effective diameter o than that of Eq. (4) without loss of
accuracy,16 and the resulting scheme combines the advan-
tages of the WCA and BH theories.

It is this BAS approach to the treatment of the reference
system that we here set out to combine with SCOZA along
the lines of a suggestion first put forward by Raineri et al.”
After a short reminder of SCOZA and BAS theory and a
presentation of their combination (Sec. IT) we apply our BAS
SCOZA to the LJ interaction (2), comparing our results with
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simulation data as well as the predictions of BAS theory
(Sec. IM). Tt turns out that we can well reproduce earlier BAS
results and, in fact, improve upon them in slightly supercriti-
cal isotherms. As far as phase coexistence is concerned, how-
ever, the residual diameter dependence of the free energy
translates into an uncertainty of the pressure P and chemical
potential w that renders the coexistence curve more sensitive
to variations in oy than expected. As shown in the Appendix,
this is related to the divergence of the compressibility at the
critical point. Without a criterion to fix oy(7) unambigu-
ously, and in the face of further problems connected to the
spinodal of the underlying SCOZA computation if the hard
sphere diameter of the reference system gets too small, the
BAS SCOZA considered here is thus found to lack the fac-
ulty of predicting the LJ phase diagram with the accuracy
one has come to expect from SCOZA. In our concluding
remarks we consider the prospects for a SCOZA adapted to
nonhard sphere reference systems more generally (Sec. IV).

Il. BAS CORRECTIONS TO SCOZA

The starting point of BAS theory, and hence also of our
combined BAS SCOZA, is the splitting (3) of the full poten-
tial into its repulsive and attractive components. In the
present work we adopt the conventional WCA prescription of
separating them at the position r;, of the potential’s mini-
mum, i.e.,

Us(r)={v(r)_v(rmin) for r < Tmin

0 otherwise,

(5)

( ) U(rmin) for r < "'min
vl = ur) otherwise.

In the LJ case, ryj,= {20 and Urmin) =—€. The Helmholtz
free energy of the fluid is customarily written as the sum of
the ideal gas contribution A!¢ and the excess free energy A%,

A=A+ A%

In computing A®*, BAS start from a hard sphere reference
system and split A into the hard sphere term Aj; and two
correction terms corresponding to vg and vy, respectively,

Aex:A?_;(+AAs+AAA.

The term AAg implementing the difference between hard
(H) and soft (S) repulsions is given by16

BRAs_ 27p f (gu(r) = gs(m)r’dr, (6)

N 0

where the g(r) denote the respective PDFs. As in WCA and
BAS theories, we relate gg to gy by the assumption of equal
cavity function y(r)=g(r)exp(+Bu(r)). This is expected to be
quite harmless for the rather stiff LJ case considered here.”!
We have checked that the three-term approximation for y;(r)
inside the core used in Ref. 15 gives essentially the same
results as a four-term one due to Henderson and Grundke.*
Outside the core we adopt Waisman’s prescription for the
hard sphere structure functions: The direct correlation func-
tion cy(r), r> oy, is approximated by a single Yukawa tail
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with parameters chosen so as to reproduce the Carnahan-
Starling equation of state through both the compressibility
and the virial routes,” cf. appendix A of Ref. 6.

The remaining contributions to the free energy are Aj}
and AA,. For the former one may use the well-known
Carnahan-Starling result,24 whereas the latter is given in
BAS theory as an integral over gy(r)u,(r)."® On the other
hand, Ajj,=Aj+AA, corresponds to the superposition of
hard core repulsion and long-range attraction, i.e., to the po-
tential

vya(r) = vy(r) + vy (7).

This is precisely the HA situation SCOZA has long been
applied to with excellent results. In combining BAS theory
and SCOZA it is therefore natural to use SCOZA for the
description of this HA subproblem, and for the computation
of Ajj,, in particular. By adding AAg we then arrive at the
full excess free energy, from which any remaining thermo-
dynamic quantities may be derived. This recipe was first pro-
posed in Ref. 20.

The first step in computing the thermodynamics of the
full SA system along an isotherm at inverse temperature 3
within the combined BAS SCOZA is the determination of
the effective hard sphere diameter oy. In view of the pur-
ported insensitivity of BAS theory results to the precise
choice of oy, we generally employ a simple Boltzmann fac-
tor criterion (BFC) to fix the temperature dependence of
aH.'6’20 According to this criterion, we choose o(8) so as to
keep Bug(oy) constant, exp(—Bug(oy))=1/aggc. Here we
have introduced a parameter agrc Whose variation allows us
to change o in a consistent way for all temperatures. In Ref.
16, BAS found virtually unchanged results for the parameter
range 2<agpc<2J5, which includes the a priori preferred
value aggc=e.” In some of the computations we also use the
BH prescription (4).

With oy, so determined, the SCOZA part can be handled
in the usual way'® except that the WCA splitting (5) effec-
tively precludes a multi-Yukawa or Sogami-Ise representa-
tion of v,(r) for > 0. We thus have no choice but to turn to
an implementation where the OZ relation, along with the
customary SCOZA closure,

gHA(V)ZO for r < Oy,

(7)

cua(r) = cy(r) = Kuy(r)  for r> oy,

is solved numerically.12 The first of the above relations ex-
presses the impenetrability of the effective hard cores
whereas the second one describes the effect of the attractive
tail on the HA direct correlation function cy,(r) outside the
core beyond that of hard spheres, cy(r). Comparison imme-
diately shows that this corresponds to the MSA closure with
B replaced by a state dependent effective inverse temperature
K(B,p). The latter is fixed through the requirement of ther-
modynamic self-consistency as embodied in the SCOZA
PDE
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( J 1 ) (07214HA> ®)
IBxua/ p P ap* /g

Here 1/xya=1-pfcpua(r)d®r so that k=Bxya/p is the iso-
thermal compressibility of the HA system as evaluated
from the compressibility route, and uga=Upj,/V
=2mp*[ HgHA(r)vHA(r)rzdr is the energy route result for the
excess, or configurational, internal energy per unit volume.
Solution of this PDE subject to suitable boundary conditions
at infinite temperature as well as at vanishing and high den-
sity yields both the structural and the thermodynamic prop-
erties of the HA system throughout the domain of the PDE.
Only below the critical temperature is there a region of in-
stability or nonconvergence that must be excluded from the
integration. It is customary to do so through the imposition
of an additional boundary at the spinodal so that no SCOZA
results are available inside the HA spinodal. For a detailed
description of the numerical procedure we refer the reader to
the literature.™'!

For use in BAS SCOZA, integration of the SCOZA PDE
is stopped upon reaching the temperature corresponding to
oy, and internal energy, free energy, pressure, and chemical
potential of the HA system are extracted along this isotherm.
Finally, we add the BAS correction terms following from
AAg in order to arrive at the final SA results for these quan-
tities.

Determination of the SA phase diagram involves repeat-
ing this procedure for all the diameters corresponding to the
temperature range of interest. As both the HA free energy so
obtained and the BAS correction term AAg are unique func-
tions of temperature and density, so is their sum A®*, the
excess free energy of the full SA system. The SCOZA PDE
is then trivially fulfilled as long as the thermodynamic quan-
tities are computed by differentiation of A®*. On the other
hand, the structure of the SA system differs from that of the
HA system computed with SCOZA and is therefore not ac-
cessible. Consequently, neither the compressibility route nor
the energy route to thermodynamics can be evaluated for the
SA case within the present approach. In this sense, BAS
SCOZA must not be seen as a soft core version of SCOZA
but rather as a BAS theory built upon a SCOZA foundation.

lll. APPLICATION TO THE LJ FLUID

In order to gauge the performance of BAS SCOZA as
described in the preceding section we now turn to its appli-
cation to the LJ potential (2) with the WCA splitting (5). For
comparison purposes we make use of the molecular dynam-
ics simulation data published by Johnson et al. » and by Lotfi
et al®® as well as Monte Carlo (MC) results due to
Wilding.27 While the former two directly relate to the full
interaction vy of Eq. (2), the latter are for the cut but not
shifted potential v ;(r)®(2.50—r) without corrections (O is
Heaviside’s function). We have therefore exploited the flex-
ibility brought about by the fully numerical solution of the
OZ relation and performed BAS SCOZA computations with
both of these potentials, depending on the simulation data we
want to compare with.
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FIG. 1. Dependence of the BAS SCOZA excess free energy A* on the
effective hard core diameter o for the four states considered in Ref. 16.
(This corresponds to Fig. 2 of Ref. 16.)

In presenting their theorym’20 as well as in their com-

parative study of various thermodynamic perturbation
theories,15 BAS focused on high densities, and mostly on
rather high temperatures: With only a single subcritical tem-
perature and with densities that are at least twice the critical
one, all of the four states repeatedly considered in Ref. 16 are
quite far from the critical point and the spinodal. Presumably
they were chosen because it is in dense or hot systems that
particles explore distances around oy effectively so that high
temperatures and densities present the most challenging test
for a perturbative description of soft cores. The effects of
variations of oy generally increase with density for the iso-
therms studied in Ref. 16 as well as in our own calculations.

For a comparison of BAS SCOZA with pure BAS theory
(or actually, AAg being identical in both cases, of their HA
parts only) these states are only of limited interest: At high
density, the pair structure is dominated by packing effects so
that any difference between (8 and the parameter K of the
closure (7) hardly affects the HA energy integral and the free
energy obtained from it by thermodynamic integration. For
the lower density states, on the other hand, the high tempera-
tures and great separations from the critical region imply that
the SCOZA self-consistency problem can hardly have
changed K/ 8 from unity appreciably and so again render the
HA structure and thermodynamics of BAS SCOZA equiva-
lent to pure BAS theory. Any remaining discrepancies in the
thermodynamics must be attributed to the difference between
first order perturbation theory and what is essentially the
MSA for the HA problem. It is therefore no surprise that
BAS SCOZA reproduces the BAS results for these states
very well. A detailed comparison of the data underlying Fig.
1 with the corresponding Fig. 2 of Ref. 16 does, however,
seem to hint at a sensitivity of A®* to variation of oy that is
slightly reduced vis-a-vis BAS theory at T =k,zT/e=2.81,
p =pc’=0.85, and slightly increased for the smallest o
values considered at T"=0.75, p“=0.84; for the latter tem-
perature, however, oy~0.94 corresponds to agpc~ 102,
which is far outside the normal range, 2<appc=<5. For
the two remaining states, 7°=3.05, p°'=1.1 and T =1.35,
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FIG. 2. The pressure P as a function of p along four isotherms as computed
within BAS SCOZA with the BFC diameters with appc=2.3, 2.5, and e,
as well as the simulation data of Ref. 25. (This corresponds to Fig. 5 of
Ref. 15.) The inset gives a detailed view of the isotherm at 7"°=1.4, along
with the curves obtained in a MSA based variant of the theory (K=p) for
agpc=2, 2.3, and e.

p =0.65, any differences are too small to be made out from
Fig. 2 of Ref. 16.

SCOZA differs from MSA mainly in the critical region
and in the vicinity of the spinodal where K strongly deviates
from S. In order to see a genuine SCOZA contribution, as
opposed to merely gauging the accuracy of a first order
perturbation theory for the HA subproblem, our interest is
naturally drawn closer to the HA critical point and thus also
closer to the critical point of the full SA system. Of
the isotherms displayed in Fig. 4 of Ref. 16, the one at 7"
=1.35 should already be sufficiently close to the critical tem-
perature of the full LJ interaction that has been estimated as
T:=1.310 (Ref. 26) and 1.313 (Ref. 25) by molecular dy-
namics, and Ti=1.3120(7) (Ref. 28) and 1.326(2) (Ref. 29)
by Monte Carlo methods. Unfortunately, BAS only show Z
=P/p in the figure so that it is difficult to discern whether
a van der Waals loop is present nor do they address this
question directly. On the other hand, the standard by which
the performance of BAS theory is judged in Ref. 16 is
the classic WCA theory. As all of BH theory, WCA theory,
and a thermodynamically self-consistent variant of the latter
due to Lado display almost identical van der Waals loops at
even higher temperature (7"=1.4, cf. inset in Fig. 5 of Ref.
15), we may safely assume that this is true for the BAS
result, too. As can be seen from the inset in our correspond-
ing Fig. 2, the same isotherm is correctly predicted to lie
above the critical temperature in BAS SCOZA and is in
essentially perfect agreement with the simulation data for
23<agpc=<e.

By way of contrast, the same diameters give substantial
deviations and show a marked trend towards a van der Waals
loop for smaller agrc when BAS SCOZA is replaced by
“BAS MSA,” i.e., if K is restricted to coincide with 8, cf.
inset in Fig. 2. While an adjustment of aggc so as to achieve
good agreement with the simulation data in this part of the
phase diagram is certainly possible, the resulting diameter
may be too small to describe the packing effects at high
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FIG. 3. The excess free energy A®* as a function of p along four isotherms
as computed with the BFC diameter with agrc=2.3, 2.5, and e.

density correctly. At any rate, for slightly supercritical iso-
therms like that at 7"=1.4, BAS SCOZA not only leads to a
better agreement with the pressure data but also proves less
sensitive to variations of the diameter. It is therefore superior
not only to pure BAS theory (which might be explained by
the qualitative difference of perturbation theory versus inte-
gral equations) but also to MSA with BAS corrections. The
improvements must therefore be attributed to SCOZA’s self-
consistency requirement.

Returning to BAS SCOZA, even for this narrow agpc
range there appears a systematic, if small, pressure difference
that increases with density. Although it is not obvious how to
relate the sensitivities to variation of oy of different quanti-
ties, comparison of Figs. 2 and 3 seems to indicate that the
pressure depends on oy more strongly than the free energy.
A similar conclusion can be drawn for the chemical potential
by comparing Figs. 1 and 4. This greater sensitivity of P and
w relative to A®* for most states, and for comparatively low
temperatures, in particular, is also demonstrated in Table I
where oy induced changes are related both to the absolute
value and to the density dependence of the respective quan-
tities. It can also be seen in pure BAS theory: For the lowest

T*=0.75, p*=0.84 H

FIG. 4. Dependence of the chemical potential u on the effective hard core
diameter oy for the four states considered in Ref. 16.

isotherm in Fig. 4 of Ref. 16, T'=0.74, a slight variation of
oy from aI;F:é by only 2% is sufficient even to change Z
from a convex to a concave function of density for p*~1.

Proceeding to the critical region and phase coexistence,
in BAS SCOZA the binodal is located as in pure SCOZA,
viz., by a search for densities of equal pressure P and chemi-
cal potential u; the critical point is identified with the locus
where the gas and liquid branches of the binodal meet. As
expected for a variant of BAS theory even if it makes use of
SCOZA input, the critical behavior is not compatible with
the Ising universality class: In the accessible temperature
range the coexistence curve is not described well by the
usual scaling form, and for the highest subcritical tempera-
tures the effective exponent S tends to values far larger than
SCOZA’s 7/20,® which in turn slightly exceeds the correct
Ising value. This is also conspicuous from the forms of the
binodals obtained from the BFC diameter ogpc with several
values of agpc as well as the BH diameter oy as displayed
in Figs. 5 and 6 for the truncated and the full LJ potentials,
respectively.

Figures 5 and 6 also bring out the gravity of the diameter
sensitivity of P and u for the description of phase coexist-

TABLE I. Sensitivity of free energy, pressure, and chemical potential at p“=0.7 and p“=1 to the choice of oy,.
For any quantity X, AX is the difference between the results obtained with agpc=2.3 and appc=2.5. The
columns AX/X and AX/(dX/dp) relate the response of both the value and the slope of X as a function of p and
so characterize the sensitivity of the shape of X(p) to variation of aggc. In general, the free energy is seen to be
far more forgiving than P and w with respect to the precise choice of oy, especially at low temperature.

. . AAS AAS AP AP Ap Ap
p T by |—dA“/dp*| 1= |—dp/dp*| |7| IdM/dpJ
0.7 4.0 2.6%X 1073 7.8%107* 8.0x 107 2.0%107* 9.5%x1073 1.7%1073
2.5 5.0%x 1073 52%x107* 1.1x1073 23X107 1.0X 1072 1.0X1073
14 8.5%x10™* 2.5%1073 1.2x1072 1.4x1073 2.6X1073 3.1%x10™*
0.75 6.7X 1074 7.6X 1074 3.5%1072 2.6X 1072 6.6X 1073 2.3%1072
1.0 4.0 4.0x10* 1.4x107* 481073 1.2x1073 2.1x1073 5.9x107*
2.5 3.2%1073 71X 1074 1.0x 1072 22%1073 8.3%107? 1.9% 1073
1.4 6.2X 1072 241073 2.1%1072 3.5%x1073 2.5%1072 3.6X 1073
0.75 8.0x 1073 6.2%x1073 44x1072 4.6x1073 24x107! 50X 1073
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FIG. 5. The curve of phase coexistence as obtained for agpc-=2.2, 2.3, 2.5,
and e as well as with the BH diameter, along with simulation results of Ref.
27. All data refer to a truncated but not shifted, rather than the full, LJ
potential.

ence: There is a substantial variation in the locations of the
upper parts of the coexistence curves when oy is changed
from 01;;5.2] (Fig. 5) or ol};;éj] (Fig. 6). It should be noted
that these optimal values of agrc cannot be computed from
the theory itself but are merely the results of comparisons
with the simulation data for the coexisting densities for the
truncated and full potentials, respectively.

The particularly great sensitivity of the binodal at the
highest temperatures can, in fact, easily be understood by
linking the shift in the coexisting densities induced by a
change in the effective hard core diameter o to the isother-

T T T T T

— BFC,a=2.2
N BFC, a=2.3

---- BFC, a=2.5

----- BFC, a=e

1

I

FIG. 6. The curve of phase coexistence as obtained for agpc=2.2, 2.3, 2.5,
and e as well as with the BH diameter, along with simulation results of Ref.
26. All data refer to the full LJ potential.
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T T T T T T

— AY/NKT
o

o e A /NKT -

—— AAJNKT

T#=1.35, p#=0.65

FIG. 7. SCOZA (A}},) and BAS (AAy) contributions to the BAS SCOZA
excess free energy at T"=1.35, p"=0.65 for varying o,. Clearly, the SA free
energy A®=A[,+AAy is far less sensitive to oy than either Aj}, or AAg
taken by itself. On the other hand, A®* is not quite constant as must be the
case for an exact theory.

mal compressibility « at phase coexistence. Clearly, « di-
verges at the critical point and then decreases along the two
branches of the binodal as we proceed to lower temperatures.
Informally speaking, a higher compressibility means that the
physical system must be compressed or expanded, and there-
fore its density changed, by a larger amount in order to offset
a small change in pressure and chemical potential, which
explains the more pronounced effect at higher temperatures.
At the same time, the thermodynamic quantities are gener-
ally more sensitive to a change in oy at higher densities,
which explains the asymmetry of the effect between the low
and high density branches of the binodal. A more formal
exposition of this reasoning can be found in the Appendix.

A different perspective on the strong oy dependence of
the binodal is offered by the realization that an increase in oy
renders the HA subproblem more strongly repulsive, thus
lowering the HA critical temperature. In an exact theory, the
correction term AAjg strictly compensates this shift of the
critical point. From a first order perturbation theory, how-
ever, we can expect only a partial compensation, as is clearly
demonstrated in Fig. 7 where we separate the SCOZA and
BAS contributions to the free energy. Consequently, a
change in agpe [or, more generally, in the prescription for
oy(B)] still leads to a systematic shift of the SA critical
temperature. For any given isotherm, this necessarily corre-
sponds to changes of the coexisting densities that are most
pronounced close to the critical point where the binodal
gains in width most rapidly.

Such shifts of B, can actually be inferred from Figs. 5
and 6. The reason they cannot be seen directly is connected
to the specific way in which BAS SCOZA combines the
theories it is built upon, viz., by adding a BAS correction
term to a SCOZA free energy: As mentioned in the Introduc-
tion, SCOZA suffers from a region where no solution can be
found due to either stability or convergence problems. This
region is buried within the HA spinodal and is customarily
eliminated through the imposition of an artificial spinodal
boundary condition. No BAS SCOZA results can therefore
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FIG. 8. Diameter dependence of the internal energy at four different states.

be obtained inside the HA spinodal. Depending on the diam-
eter, this hole in the solution may lie well within the SA
binodal. For agpc above a certain threshold, however, or
more generally whenever o(8,) is too small, the HA inter-
action is not sufficiently repulsive so that the HA spinodal
rises above the SA binodal, the upper part of which is then
no longer accessible. As can be seen from Figs. 5 and 6, this
is the case for those diameters that come close to the simu-
lated phase diagrams. The hole in the solution for tempera-
tures below the HA critical one can also be seen from the
missing intervals in the lowest temperature isotherms dis-
played in Figs. 2, 3, and 10.

Let us now consider the configurational internal energy
U*=(dBA™/3B),. With A=A}, +AA we obtain U as the
sum of the HA internal energy Uy}, extracted directly from
the SCOZA computation with fixed diameter and the correc-
tion AUy implementing the difference between hard and soft
repulsions. The latter is composed of the temperature deriva-
tive of the BAS correction AAg and a term related to the
temperature dependence of Aj}, through o (and thus to the
steepness of vy at the effective molecular surface),

Uex= UgA+AU5,

_(aﬁAAS> +(aﬁ A> doy
o doy Bdﬁ'

Here, the derivative doy/dg is to be evaluated according to
the convention used to fix oy(B), i.e., from Eq. (4) for opy,
or at constant aggc for oggc.

From Fig. 8 we see that the overall diameter dependence
of the excess internal energy is qualitatively similar to that of
the excess free energy, cf. Fig. 1. Not surprisingly, it is most
pronounced at the highest densities whereas the temperature
is of minor importance for the states considered in Fig. 8.
This can be easily understood in terms of packing effects that
dominate the pair structure. In Fig. 9 we again separate the
SCOZA and BAS contributions to the internal energy. Inter-
estingly, the latter compensates the diameter dependence of
the former not even approximately as was the case for the
free energy (Fig. 7). Instead, AUy is essentially constant over
the whole oy range shown, and the variation of U** is due to
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FIG. 9. SCOZA (Uy;,) and BAS (AUs) contributions to the BAS SCOZA
internal energy at 7°=1.35, p"=0.65, and T"=1.5, p"=0.3 for varying oy.

Utis alone. As Fig. 10 shows, the particularly low sensitivity
of U with respect to oy in the upper panel of Fig. 9 is a
mere consequence of the transition between density ranges
where U®* rises or falls, respectively, with growing . In the
lower panel, the internal energy again varies by several per-
cent in the oy range displayed.

Both pressure P and internal energy U®* as computed
within BAS SCOZA with 2.3<agpc<e are generally in
good agreement with the simulation results for the sample

! T ! r I T I T I

i . — BFC,a=23 )
1= ;:21 5 | BFC, a=2.5 -
L T*=14 |7 BFC, a=e il

FIG. 10. BAS SCOZA and simulation (Ref. 25) results for the configura-
tional internal energy U®* along four different isotherms for three choices of
agre- (This corresponds to one panel of Fig. 4 of Ref. 16.)
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isotherms displayed in Figs. 2 and 10. Only a detailed com-
parison reveals some systematic deviations that seem to hint
at a moderate state dependence of the optimal value of agpc:
At high densities and supercritical temperatures U®* is best
reproduced with agpc=e, and the simulated pressures indi-
cate an agpc even slightly larger than e. By way of contrast,
phase diagram (Fig. 6), pressure (Fig. 2), and internal energy
(Fig. 10) all agree that agpc=2.3 is the optimum value for the
full LJ interaction for states for which SCOZA’s self-
consistency requirement is expected to be relevant, i.e., for
T<T,. as well as for T~T,, p~ p.. A similar level of agree-
ment is also expected for the truncated potential with a
slightly larger diameter, agpc=2.2, cf. Fig. 5. This difference
of about 0.1% in oy seems remarkably small given the pro-
nounced influence on the critical parameters such a cut may
have,” and, in particular, given the respective critical tem-
peratures T: <1.2 for the cut potential27 as opposed to
T; > 1.3 for the full interaction,zs’%’zg’29 cf. Figs. 5 and 6.

IV. CONCLUSION AND PERSPECTIVES

As we argued at the end of Sec. II, BAS SCOZA should
be regarded as a SCOZA-based variant of BAS theory rather
than as a modified SCOZA. From this point of view our
expectations regarding the performance of this combined
theory are well fulfilled: Good agreement with simulation
results for binodal, pressure, and internal energy can be
achieved with a judicious choice of the parameter aggc; we
find a significant improvement over pure BAS theory at
slightly supercritical isotherms, and away from the critical
region and phase coexistence both schemes give essentially
equivalent results. Unfortunately, the transition from pure
BAS theory to BAS SCOZA entails a dramatic increase in
computational cost as the solution of a nonlinear PDE in 3
and p is required just for the results along a single isotherm.
For the computation of a full phase diagram, BAS SCOZA
theory is far more demanding than even fixed-diameter
SCOZA where a single integration of the PDE yields the
results at all densities and temperatures.

On the other hand, the present scheme was originally
proposed as a soft core extension of SCOZA rather than as
an improved BAS theory.20 And indeed, BAS SCOZA is able
to handle SA fluids using the true interaction whereas previ-
ous applications of conventional SCOZA to the LJ fluid had
to rely on heuristic, and by no means small, corrections to
form and amplitude of the potential outside the fixed hard
core’ that raise the critical temperature by about 5%."° Still,
the huge increase in computational cost, the problems con-
nected to the HA spinodal, and the loss of all structural in-
formation may seem an inordinate prize to pay for this ad-
vantage of BAS SCOZA.

Most importantly, though, the distinctive feature of
SCOZA, viz., the thermodynamic consistency requirement
implemented by an effective temperature that replaces the
true temperature in the MSA closure for the HA system,
shows up in the results only in the proximity of the critical
point. It is there that we have to look for SCOZA-specific
improvements: In the rest of the (8, p) plane SCOZA is es-
sentially equivalent to MSA, and any improvements over
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pure BAS theory merely reflect the superiority of integral
equations over perturbation theory in evaluating the differ-
ence AA, of the free energies of the H and HA systems.
Close to the critical point, however, the chief advantage of
BAS theory, viz., the near constancy of the thermodynamic
results under variation of oy breaks down, and the BAS
SCOZA binodal strongly depends on a(8). The value of the
parameter agpc thus greatly influences the predicted phase
behavior; at the same time, it cannot be computed from the
theory itself, and the a priori attractive choice of agpc=e
(Ref. 20) is certainly unsatisfactory in the critical region.
Further considering that the BAS SCOZA binodals are far
from compatible with the Ising universality class we there-
fore conclude that the theory as presented here cannot be
used to predict the critical properties and liquid-vapor phase
behavior from first principles with anywhere near the accu-
racy usually associated with SCOZA.

As for the feasibility of a BAS-based SCOZA rather than
a SCOZA-based BAS theory, the main obstacle in using
BAS results to “provide reference-system input”15 for
SCOZA is the purely thermodynamic nature of the BAS term
AAjg that does not allow us to relate the structures of the HA
and SA fluids. Without K-dependent SA structures, however,
neither the energy nor the compressibility routes to the SA
thermodynamics can be evaluated, and the question of their
consistency becomes meaningless. Indeed, inclusion of the
soft core contribution in the thermodynamic self-consistency
problem is likely to be of prime importance for the perfor-
mance of an eventual soft core variant of SCOZA."

What then, one may ask, are more promising ways to-
wards a SCOZA capable of describing SA systems? For this
we see two options: One possibility is to consider formula-
tions where the introduction of an effective hard core refer-
ence system still allows the analytical short cuts for the so-
lution of the OZ equation available for the multi-Yukawa or
Sogami-Ise fluids to be used and that include the softness in
the self-consistency problem, if only approximately; one
such approach has recently been proposed.14 On the other
hand, if the hard-won freedom to choose almost arbitrary
functions v, and vy for the attractive and soft-repulsive parts
of the interaction is to be retained, the OZ relation must be
solved numerically at any rate. In this case there is no need
for a hard core reference system, and nonperturbative ways
of treating the soft repulsive reference fluid may be more
appropriate and less wasteful in terms of computing re-
sources and structural information. We intend to pursue this
topic in a further study.
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APPENDIX: DIAMETER SENSITIVITY
OF THE BINODAL

Let us consider a subcritical isotherm, 8> (3., with vapor
and liquid coexisting at densities p, and p;, respectively.
Along this isotherm the exact free energy is a function of
density only, A=A(p). The BAS free energy, on the other
hand, is computed in an approximate way and makes use of
an effective hard sphere reference system with density inde-
pendent diameter oy. It therefore acquires an additional de-
pendence. To obtain the free energy at slightly different val-
ues of oy and p we can use the first order Taylor expansion

Alp+Ap,oy+Acy) =A(p) + AO'HA(p) +ApA'(p)+ -+ .

In this appendix we use dots to denote differentiation with
respect to o and primes for differentiation with respect to p.
For the benefit of a compact notation we will also use sub-
scripts v and [ to indicate functions evaluated at p, and p,,
respectively, as well as subscripts + or — for their sym-
metric and antisymmetric combinations, i.e., ¥, =+,
= (p,) £ y(p,) for any quantity i.

By differentiation of the free energy we get analogous
relations for the pressure P and chemical potential u, the two
quantities that directly enter the determination of the coex-
istence curve:

P(p+Ap,oy+ Aay) = P(p) + Aoy P(p) + ApP' (p) + -+

wlp+Ap,oy+ Aay) = ulp) + Aoysi(p) + Aoy’ (p) + -+ .

For given oy, the coexisting densities are obtained from
the criterion of equal pressure and chemical potential,
P(pv’ O-H) =P(pl» O-H) and /-L(pv» O-H) =Iu“(pl’ O-H)' SpeCialiZing
to the coexisting densities p,, and p; obtained for this oy, the
equilibrium conditions reduce to P,=P; and u,=pu;, or

P_=pu_=0. (A1)

Nonzero Agy, on the other hand, modifies both pressure and
chemical potential and is therefore generally accompanied by
changes Ap, and Ap, in the coexisting densities. Taking Eq.
(A1) into account, switching to symmetric and antisymmet-
ric combinations of quantities and simplifying, the equilib-
rium conditions are easily obtained as

P'Ap, + P Ap_+2P_ Aoy =0,

MLAp, + pAp_+ 24 Aoy =0,

to lowest order. Solving for Ap, yields the sensitivity of the
symmetric and asymmetric shifts in the coexisting densities
to a change Aoy of the effective diameter as

_ _ Plp—pP
Piul-Plul ~ Plu,-Pu’

Ap. Pl —u.P.

AO'H

where we have taken advantage of some cancellations in the
denominator to arrive at the second expression.

From the product of two density derivatives in the de-
nominator as opposed to single factors of density derivatives
in the numerator it is already apparent that the sensitivity of
the binodal to variation of oy must be proportional to the
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isothermal compressibilities «, and «; at the coexisting den-
sities. To make this more explicit and simplify the expres-
sions further, we introduce the free energy per unit volume f
and use basic thermodynamic relations to replace the pres-
sure and chemical potential, as well as their derivatives, by
appropriate expressions in terms of f and its derivatives
while converting reciprocals of f” to the isothermal com-
pressibilities. After some slightly tedious simplification we
get explicit expressions for the shifts in the coexisting den-
sities induced by a change Aoy of the effective diameter,

viz.,

Ap: _ 5 (-, f_—) 2 ('/ f_—)

AO'H_pIKI fl Ap_ ivav fv Ap_
_Ap_Ap,
AO'H_A(TH-

The change of any one of the coexisting densities with oy is
thus proportional to the product of the compressibility at that
density and a factor that combines the sensitivities of the free
energy at both branches of the binodal with its density de-
rivative.

In an exact theory, of course, all the oy derivatives van-
ish exactly and the coexisting densities are strictly indepen-
dent of o even at the critical point, 8=f3,, p_=0, where the
compressibility diverges. In an approximate theory, on the

other hand, f - f_/ Ap_ is nonzero for B> 3., and while its
limit for 8— B, obviously vanishes, that of its product with
the diverging compressibility may be zero, finite, or even
infinite; for BAS SCOZA, Figs. 5 and 6 indicate a finite
value. As B further increases from g, the two branches of
the binodal separate rapidly, and the one-sided difference

quotient f_/Ap_ over the coexistence region no longer can-

cels the derivative /' at either side of the binodal. The ex-
pression in parentheses is therefore no longer expected to be
close to zero. In the case of BAS SCOZA, the variability of
f with oy strongly increases with density, as is expected for
thermodynamic perturbation theories in general. This carries

over to f - f_/ Ap_ and, in combination with the prefactor p?,
so explains why the sensitivity of p; is significantly larger
than that of p,,.
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