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Self-consistent Ornstein-Zernike approximation for molecules with soft
cores
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The self-consistent Ornstein-Zernike approximation �SCOZA� is an accurate liquid state theory. So
far it has been tied to interactions composed of hard core repulsion and long-range attraction,
whereas real molecules have soft core repulsion at short distances. In the present work, this is taken
into account through the introduction of an effective hard core with a diameter that depends upon
temperature only. It is found that the contribution to the configurational internal energy due to the
repulsive reference fluid is of prime importance and must be included in the thermodynamic
self-consistency requirement on which SCOZA is based. An approximate but accurate evaluation of
this contribution relies on the virial theorem to gauge the amplitude of the pair distribution function
close to the molecular surface. Finally, the SCOZA equation is transformed by which the problem
is reformulated in terms of the usual SCOZA with fixed hard core reference system and
temperature-dependent interaction. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2347704�
I. INTRODUCTION

The self-consistent Ornstein-Zernike approximation
�SCOZA� has been found to give very accurate results for the
equation of state for fluids and lattice gases. This approxima-
tion was proposed by Høye and Stell.1,2 Some preliminary
results were obtained for supercritical temperatures.2,3

However, for subcritical temperatures there were nu-
merical problems connected to the singular behavior along
the spinodal curve and the no-solution region inside it. The
first successful subcritical solution was made by Dickman
and Stell for the Ising model or the lattice gas case.4 It turned
out that results were very accurate.

Borge and Høye made a more general numerical inves-
tigation of the SCOZA equation of state in the critical
region.5 Clearly scaling was not fulfilled very close to the
critical point. But apart from that the critical behavior was
close to that of real fluids. It was especially noted that the
critical exponent � for the curve of coexistence was equal or
close to 0.35. This value was subsequently confirmed by nu-
merical evaluations by others.6

Also Borge and Høye compared SCOZA results with
experimental data on CO2 in the critical region.7 By closer
study of these data on a scaling plot it was realized that they
did not collapse onto a single scaling curve but gave a series
of close-lying curves instead, and the SCOZA results were
consistent with such deviations from scaling.5

Høye et al. then made a closer investigation of the criti-
cal region of SCOZA.8 Their analysis showed that SCOZA
fulfills a generalized kind of scaling instead of the usual one,
and they obtained the value of 0.35 for the critical exponent
�.
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SCOZA was then applied to continuum fluids, and Pini
et al. considered the hard sphere fluid with interaction of
Yukawa form.9 The results agreed well with simulation data.
Furthermore, interactions using more Yukawa terms were
also considered.10 This allowed approximations to the
Lennard-Jones �LJ� potential of realistic fluids to be
studied.10 Accurate results were also obtained for the more
short-ranged fullerene interactions.11,12

So far SCOZA has been applied to continuum systems
with hard cores perturbed by an attractive interaction only.
Real molecules, on the other hand, have soft cores. In order
to obtain more accurate results, this should therefore be
taken into account. To do so we use hard spheres with an
effective diameter d. In combination with the self-
consistency requirement of SCOZA, however, the use of an
effective diameter turns out to become a nontrivial problem.
This is connected to the necessity of properly taking into
account the contribution to the internal energy due to the
repulsive interaction. Furthermore, a numerical procedure
using the semianalytical solution of the Ornstein-Zernike
�OZ� equation becomes more problematic as a grid of fixed
densities � implies varying packing fractions �= �� /6��d3

when the effective diameter d changes. While a fully numeri-
cal solution of the OZ relation is possible13 and sidesteps this
particular problem, it entails a huge increase in computa-
tional complexity and cost.

In the present work, on the other hand, we avoid the
need for heavy numerics. Instead we opt for a more concep-
tual approach to the introduction of soft cores into SCOZA
by means of effective hard cores. In doing so we prefer here
a prescription for the hard core diameter d that depends only
upon temperature �Sec. II�. It turns out that an accurate
evaluation of the reference system contribution to the con-

figurational internal energy plays an important role. This

© 2006 American Institute of Physics03-1

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2347704
http://dx.doi.org/10.1063/1.2347704
http://dx.doi.org/10.1063/1.2347704


104503-2 J. S. Høye and A. Reiner J. Chem. Phys. 125, 104503 �2006�
quantity can be linked to the pressure and hence to the virial
theorem �Sec. III� and must be taken into account for the
energy route part of the SCOZA self-consistency problem
�Sec. IV�. A further refinement uses the virial theorem once
more, this time to gauge the amplitude of the pair distribu-
tion function close to the core �Sec. V�. We conclude with a
formal mapping of the soft-core SCOZA for fixed interaction
onto the usual SCOZA with fixed hard core and a
temperature-dependent potential. This essentially eliminates
any softness and so provides a way of avoiding the com-
plexities associated with it �Sec. VI�.

II. INTERACTION AND EFFECTIVE HARD CORES

The pair interaction for real atoms that are neutral is
typically given by the LJ interaction,

��r� = 4����

r
�12

− ��

r
�6� ,

with length and energy scales of � and �, respectively. �From
now on we will use units where �=�=1.� In approximations,
the repulsive part of this interaction where ��r��0 is com-
monly replaced by a hard core. This has also been done in
earlier SCOZA computations where the hard core diameter d
was kept fixed.

State-dependent effective hard cores have been used ear-
lier to evaluate the equilibrium properties of fluids, and there
exist various recipes; see Ref. 14 for a recent compilation
and comparison in the context of thermodynamic perturba-
tion theory. The simplest schemes such as the Barker-
Henderson prescription15 use an effective diameter d that de-
pends on temperature only, whereas more advanced recipes
include a density dependence, too.16

In the present work we limit ourselves to a d that de-
pends only upon temperature. The main reason for this is the
added complexity of the problem when combining it with the
self-consistency of SCOZA. In particular, the latter requires
that the reference system internal energy becomes part of the
thermodynamic self-consistency and must be properly ac-
counted for. This inclusion of the contribution of the soft
cores in the self-consistency problem is the fundamental dif-
ference between this method and another one which is a
combination of SCOZA and a first order perturbation theory
proposed as a way of handling soft repulsive cores17 and
studied recently.18

Another reason for the use of a d that depends only upon
temperature is the connection to the hard sphere equation of
state that becomes unique. In other words, both the virial
theorem and the compressibility theorem will remain consis-
tent if they are consistent for the reference system with tem-
perature independent d.

The importance of d for quantitative accuracy is seen
from the fact that the mean-field critical temperature and
density vary with d as d3 and d−3, respectively, when the
interaction 	�r� is held constant. From the second virial co-
efficient of the repulsive part of the LJ interaction one will
find roughly d3	0.92 at the critical temperature if ��r� for
r
1 is replaced by an effective hard core. This is in satis-

factory agreement with the SCOZA result with fixed d when
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compared with simulations. With temperature independent
d=1 SCOZA yields the value Tc=1.245 with a three-Yukawa
fit to the Lennard-Jones interaction for r�1, cf. Fig. 4.3 of
Ref. 19. For simulations performed for the full LJ interac-
tion, one has found Tc=1.310 �Ref. 20� and 1.313 �Ref. 21�
by molecular dynamics, and Tc=1.3120�7� �Ref. 22� and
1.326�2� �Ref. 23� by Monte Carlo methods. Previous
SCOZA evaluations but with temperature independent d=1,
however, yielded values Tc=1.304, 1.293 �Ref. 10�, and
1.305 �Ref. 19� of the critical temperature. But these values
are based on two-Yukawa fits to the LJ interaction with a
compensation for the soft core such that the right second
virial coefficient is reproduced. The variations in these latter
numbers are due to the precise potential fit and the detailed
form of the direct correlation function used with respect to
the reference system hard cores.

Without thermodynamic self-consistency, results for iso-
therms at different temperatures are independent. The effec-
tive d for a given temperature then determines the equation
of state for that temperature. This is the case for common
fluid theories. For SCOZA, on the other hand, this is no
longer true. But away from the critical region this coupling
cannot be important as other theories are accurate there, too.
One approximate way to implement SCOZA with
temperature-dependent d can then be to solve the equations
with the same d at all temperatures but to use the results only
for the isotherm corresponding to the chosen d. Repeated
evaluations with different d will then give the full phase
diagram. This approach bears some resemblance to the
SCOZA-based perturbation theory mentioned above.18 Just
as the latter, however, such a procedure is only approximate,
and compiling a full phase diagram requires substantial com-
puter resources far in excess of those needed for a single run
of the SCOZA program.

The division of the pair interaction ��r� into a reference
system part �0�r� and a perturbing part 	�r� can be per-
formed in various ways. As suggested above, one can use the
repulsive part where ��r��0 as the reference system
interaction,15

�0�r� = 
��r� , r 
 1

0, r � 1.
�

With this the perturbing interaction is

	�r� = 
0, r 
 1

��r� , r � 1.
� �1�

However, there are more choices for this splitting of the in-
teraction, and an alternative is to use24 �rm=21/6�

�0�r� = 
��r� − ��rm� , r 
 rm

0, r � 1
�

	�r� = 
��rm� , r 
 rm

��r� , r � rm.
�

As was verified by Høye and Borge, SCOZA requires a per-
turbing interaction that is mainly attractive, or else the equa-
tions cannot be solved.25 Clearly, the above suggested split-

tings of the potential fulfill this condition.
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Furthermore, in order to keep the numerical implemen-
tation less demanding it is desirable to approximate the in-
teraction outside the effective hard core as a sum of Yukawa
terms. This allows the OZ equation to be solved in a semi-
analytic way. For a potential such as the LJ one, such a
multi-Yukawa form of ��r� outside the core is easily found.
For example, a simple nonlinear least-squares fit of a sum of
three Yukawa terms constrained to reproduce ��1�=0 con-
verges rapidly and gives a result that is essentially indistin-
guishable from the original LJ form for r�1.19 When d
1,
however, this fit is certainly not constant for d
r
1 as
mandated by the two types of splitting mentioned above. For
instance, one can then add one more Yukawa term to ap-
proximate the desired form; this will generally be a rather
short-ranged function that hardly contributes beyond r=1.
For prescription �1� both the range and the amplitude of the
additional Yukawa term can be fixed by imposing, e.g.,
	�d�=	��d�=0. At any rate, any remainder of 	�r� not ac-
counted for by this sum of Yukawa terms is added to �0�r�
���r�−	�r� and so enters the computation through the
evaluation of the effective diameter.

In solving SCOZA, the reference system is used as a
boundary condition at temperature T→�, or �=0 where �
=1/ �kBT� and kB is Boltzmann’s constant. Strictly speaking,
the reference system becomes the ideal gas in this limit for a
soft core, i.e., d→0 which is far from unity. However, use of
the ideal gas as reference system may give rise to additional
problems, especially in the numerical implementation. So we
have not tried to investigate this possibility further. Instead
we have focused upon the situation with an effective hard
core diameter d near 1. The justification for this lies in our
arguments above. They mean that different temperatures and
densities do not couple significantly away from the critical
point anyway. We can therefore start at �=0 with a nonvan-
ishing value of d corresponding to, say, twice the critical
temperature, and start to vary d only at lower temperatures
for which SCOZA values then will be valid.

III. REFERENCE SYSTEM AND REPULSIVE INTERNAL
ENERGY

In approximating a soft repulsive core by an effective
hard core, the simplest prescription is to let the diameter d
depend only upon temperature. One possibility is to define d
such that the second virial coefficient for the soft particles
coincides with that of the effective hard cores,

4�

3
d3 =
 �1 − e−��0�r��dr . �2�

The prescription of Ref. 15 is slightly different from this in
that it replaces the three-dimensional integral �2� with a one-
dimensional one. However, the result will be the same to
leading order in the difference 1−d which is considered
small. In this connection, it can be mentioned that the precise
prescription is not crucial since both give a d that depends
only upon �, and the SCOZA problem needs only d��� as

input, not its prescription.
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At high density there are better approximations with
density dependence, but we expect the deviations of such
choices from Eq. �2� to be small when the soft potential can
be considered steep at the molecular surface.

In contrast to strict hard spheres, a soft repulsive poten-
tial implies that the reference system also contributes to the
configurational internal energy. This can be related to the
pressure and ultimately to the virial theorem. The equation of
state can be written as

�p = � + �1 − �
�

��
�I0, �3�

where p is the pressure, I0=−��f0, and f0 is the excess �be-
yond the ideal gas� Helmholtz free energy per particle. For
effective hard cores, I0 /� only depends on the packing frac-
tion �,

I0 = �y��� .

Insertion into Eq. �3� thus gives

�p = ��1 − �
�y

��
� . �4�

The configurational or excess internal energy u0 per particle
of the reference system is now

�u0 = −
�I0

��
= − �

�y

��

��

��
= − ��

�y

��

� ln d3

��
,

and finally, using Eq. �4� for �y /��,

�u0 = ��p − ��
� ln d3

��
.

The virial theorem for hard spheres implies

�p − � =
2�

3
d3�2n0�d + �

and so connects the above internal energy to the contact
value n0�d+ � of the pair distribution function,

�u0 =
2�

3
d3�2n0�d + �

� ln d3

��
. �5�

To gain some intuition for the consistency of this result,
we can insert the definition �2� for the effective diameter.
This yields

� ln d3

��
=

1

d3

�d3

��
=

��0�r�e−��0�r�dr

�4�/3�d3

and thus finally,

�u0 =
1

2
�2n0�d + � 
 �0�r�e−��0�r�dr .

This is the low density value of the internal energy, amplified
by the contact value n0�d+ � for higher densities. Compared
with the exact u0, the pair distribution function is here ap-
proximated by n0�d+ �e−��0�r�. Its accuracy increases as the
repulsive part of the potential becomes less soft. A different
prescription for d��� such as that of Ref. 15 gives different

expressions for the above two integrals, but otherwise the
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precise choice of d��� is of no consequence for the remain-
der of this work.

IV. SCOZA EQUATIONS

The SCOZA approach is based upon thermodynamic
consistency between the energy and compressibility routes to
thermodynamics. These routes are connected via the thermo-
dynamic relation

�a

��
= �

�2�ut

��2 , �6�

where

a =
��p

��

is the reduced inverse compressibility and ut is the total con-
figurational internal energy per particle. Both a and ut are
evaluated from the pair correlation function in different
ways, viz. by the compressibility and energy routes to ther-
modynamics. In general, the pair structure is known only
approximately, and a and ut give different thermodynamics.
In SCOZA, on the other hand, consistency between the two
routes in the form of Eq. �6� is enforced by adjusting an
unknown parameter, usually the amplitude of the direct cor-
relation function c�r� outside the hard core. Specifically, in
the mean spherical approximation �MSA� the contribution to
c�r� from the perturbing attractive interaction 	�r� is

c�r� = − �	�r�, r � d . �7�

SCOZA replaces � in the above relation by an effective
value that depends on both temperature and density and is
obtained from the solution of Eq. �6�. The total correlation
function h�r�=n�r�−1 is then obtained from the core condi-
tion

h�r� = − 1, r 
 d ,

and the OZ equation

h̃�k� = c̃�k� + �c̃�k�h̃�k� .

�The tilde marks Fourier transforms.� One can then evaluate
a as well as u, the internal energy contribution from the
attractive interaction alone, according to

a = 1 − �c̃�0� ,

�8�

u =
1

2
�
 	�r��h�r� + 1�dr .

In this way, both a and u are, in principle, obtained as func-
tions of the effective temperature �e for any given density
and interaction. Consequently, u �or a� can replace �e as the
free parameter so that correspondingly a �or u� can be ex-
pressed in terms of the former. Inserting this into Eq. �6� one
then obtains the SCOZA partial differential equation �PDE�

for u �or a�.
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V. CONTACT VALUE OF THE PAIR DISTRIBUTION
FUNCTION

For soft repulsive interactions the total internal energy ut

to be used in Eq. �6� is the sum of the contributions �5� and
�8�, i.e.,

ut = u0 + u . �9�

At first sight one might expect u0 to play a minor role. But a
closer investigation shows that it is crucial for obtaining re-
sults consistent with a changing diameter d. The reason for
this is that the reference system enters primarily as the
boundary condition of the PDE at �=0. For ��0, a change
in d is not “seen” except through u0 �and a small perturbation
of u due to small changes in h�r��. Neglecting u0 thus means
essentially keeping d fixed at its �=0 value. Our preliminary
numerical work strongly indicated this importance of the u0

term.
Since u0 plays such an important role, the accuracy of

the contact value n�d+ �=1+h�d+ � becomes of interest. For
��0, n�d+ � deviates from n0�d+ �, and clearly the former
more accurately describes the energy due to the reference
system interaction �0�r�. With a direct correlation function
of the form �7�, however, there is no reason to expect that the
h�r� obtained is accurate close to the hard core. In particular,
the contact value h�d+ � strongly depends on the choice of
	�r� at r=d and thus on the potential fit with the added
Yukawa tails. A more reliable method of obtaining the con-
tact value is thus desirable.

One appealing possibility is provided by the virial theo-
rem that then also, to a certain degree, enters the SCOZA
where it has played no role traditionally. Høye and Stell ear-
lier proposed full consistency between the energy, virial, and
compressibility routes,2 but this requires structure functions
depending on two free parameters and has not been consid-
ered numerically so far, nor will it be considered here. But on
the other hand we can still obtain desired information about
the contact value n�d+ � via the virial theorem using the
SCOZA quantities as input.

From the virial theorem for hard cores with attraction,
the contact value n�d+ � is as follows:

�p = � +
4�

6
d3�2n�d + � + ���u − v� ,

where the virial integral is split into two parts, with u given
by Eq. �8�. The expression for the remainder v then becomes

v = u +
1

6
�
 �r � 	�r��n�r�dr =

1

6
�
 ��r	�r��n�r�dr ,

with the integrations restricted to r�d. Note that v vanishes
in the mean field limit as then n�r�=1. Expression �5� for u0

can now be expressed in terms of the new contact value
n�d+ � instead of the reference system value n0�d+ �. With the
above relations we find

�u0 = ��p − � − ��u + ��v�
� ln d3

��
. �10�

Thus the additional complication of evaluating u0 is the

evaluation of the integral for v.
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VI. TRANSFORMATION TO UNIT DIAMETER

With varying d there is an additional problem if the ana-
lytic solution of the OZ equation for a sum of Yukawa terms
is used. The latter provides a as a function of u only at
constant packing fraction and interaction, whereas the PDE
requires the temperature derivative to be taken at constant
density. When � and thus d change while the density grid in
the discretization is kept fixed, the packing fraction also
changes and the relation between a and u becomes less direct
and more challenging to evaluate numerically.

If now the varying d problem can be transformed into a
situation of fixed unit diameter d=1, the discrepancy men-
tioned will not arise and application of the analytic solution
of the OZ equation will be simpler. The price to pay is an
interaction that varies with � in the transformed problem. As
we will se below, this works out nicely and gives equations
that can be given a direct physical interpretation.

To obtain the desired transformation we introduce a
number of quantities, marking those of the unit diameter
problem by a subscript 1,

�1 = �d3, �1 = �/d3, p1 = pd6,

u1 = ud6, v1 = vd3, �1�r1� = d3��r� ,

r1 = r/d, dr1 = dr/d3, n1�r1� = n�r� .

With Eqs. �6�, �9�, and �10� we have the SCOZA PDE

�a

��
= �

�2

��2 ��u + A�p − �u + �v�� ,

where, for brevity, we put

A = �
� ln d3

��
=

�

d3

�d3

��
.

For a d that depends only on �, the introduction of the new
quantities on the right hand side is done in a straightforward
way. With �2 /��2=d6�2 /��1

2 we get

�a

��
=

1

d3�1
�2

��1
2 ��1u1 + A�p1 − �1u1 + �1v1�� . �11�

For a we find likewise

a =
���p�

��
=

���1p1�
��1

= a1.

The derivative with respect to � then becomes

�a

��
=

��1

��

�a1

��1
+

��1

��

�a1

��1

= � 1

d3 −
�

d6

�d3

��
� �a1

��1
+ �d3 1

�
A

�a1

��1

=
1

d3��1 − A�
�a1

��1
+ �1A

�2p1

��1
2 � .

Upon insertion into Eq. �11� the p1 terms cancel and we

obtain
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�a1

��1
= �1

�2

��1
2 ��1u1 + A1�1v1� , �12�

where

A1 = �1
� ln d3

��1
=

A

1 − A
.

The latter equality follows from

�1 − A

d3 �−1

=
��

��1
= d3 + �

�d3

��1
= d3�1 + A1� .

The resulting Eq. �12� can be given a direct physical
interpretation in terms of the transformed system. The latter
consists of hard spheres of fixed diameter �d1=1�, where
now there is an attractive pair interaction that depends upon
the temperature, �1�r1�=d3��r�=d3��r1d�. Furthermore, the
soft repulsive interaction is no longer present as the trans-
formed system has hard cores. In the usual virial graph ex-
pansion, the Helmholtz free energy per particle at given den-
sity will depend only upon the interaction as before �besides
temperature and density�. This will remain the same even
though �1�r1� depends on the temperature. The total configu-
rational internal energy per particle obtained from the pair
distribution function is thus

u1t =
���1f1�

��1
=

1

2
�1
 �

��1
��1d3��r1d��n1�r1�dr1

=
1

2
�
 ��1�r1� + A1��1�r1� +

1

3
d3���r1d�

�d
��n1�r1�dr1

=
1

2
�
 ��1�r1� +

1

3
A1 � �r1�1�r1���n1�r1�dr1

= u1 + A1v1,

in accordance with the right hand side of Eq. �12�.

VII. CONCLUSION

We have investigated a method to perform SCOZA
evaluations for realistic molecules with soft cores. A
temperature-dependent effective hard core diameter is then
introduced. For thermodynamic self-consistency it turns out
that the excess internal energy of the reference system is
important and should be treated accurately. For this purpose
the contact value of the pair correlation function at the hard
sphere surface is needed. Since SCOZA does not give such a
reliable contact value, it is instead obtained by use of the
virial theorem. In Sec. VI the SCOZA problem with varying
d is transformed to a simpler one with fixed d=1. This trans-
formation not only eliminates some of the difficulties asso-
ciated with temperature-dependent diameter but also pro-
vides an independent method of evaluation that can be useful
as a test of the internal consistency of results.

The results of this work have been obtained along with
numerical work to implement and solve new problems when
soft cores are considered. So far we have only considered
simple test functions d��� to obtain a program that can
handle varying d when using analytic expressions. In this

respect the transformation to fixed d=1 in Sec. VI has been
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verified numerically by solving SCOZA with both the origi-
nal and transformed equations by putting for simplicity the
virial type integral for v and thus the one for v1 equal to zero.
For explicit evaluations with the LJ interaction it is necessary
to evaluate integral �2� for d��� and the less trivial one for v;
preliminary computations already including v are encourag-
ing. Furthermore, it will then also be desirable to study the
influence of different prescriptions for d��� and for the split-
ting of the potential into a reference part and a perturbing
attractive part. We intend to extend our computations in this
way.
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