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We have reconsidered the phase behavior of a polydisperse mixture of charged hard spheres (CHSs)
introducing the concept of minimal size neutral clusters. We thus take into account ionic association
effects observed in charged systems close to the phase boundary where the properties of the system
are dominated by the presence of neutral clusters while the amount of free ions or charged clusters
is negligible. With this concept we clearly pass beyond the simple level of the mean spherical
approximation (MSA) that we have presented in our recent study of a polydisperse mixture of CHS
[Yu. V. Kalyuzhnyi, G. Kahl, and P. T. Cummings, J. Chem. Phys. 120, 10133 (2004)]. Restricting
ourselves to a 1:1 and possibly size-asymmetric model we treat the resulting polydisperse mixture
of neutral, polar dimers within the framework of the polymer MSA, i.e., a concept that—similar as
the MSA—readily can be generalized from the case of a mixture with a finite number of
components to the polydisperse case: again, the model belongs to the class of truncatable
free-energy models so that we can map the formally infinitely many coexistence equations onto a
finite set of coupled, nonlinear equations in the generalized moments of the distribution function that
characterizes the system. This allows us to determine the full phase diagram (in terms of binodals
as well as cloud and shadow curves), we can study fractionation effects on the level of the
distribution functions of the coexisting daughter phases, and we propose estimates on how the
location of the critical point might vary in a polydisperse mixture with an increasing size asymmetry

and polydispersity. © 2005 American Institute of Physics.

[DOLI: 10.1063/1.2042347]

I. INTRODUCTION

Even though the restricted primitive model (RPM) rep-
resents a suitable model for electrolytes or molten salts (for
an overview see Ref. 1), this is certainly not the case as we
pass over to systems of charged mesoscopic particles, such as
charged microgels, colloids, or micelles. The idealizing as-
sumption of equally sized positively and negatively charged
particles in the RPM (a property which we shall also call
“bidisperse”) is no longer justified in colloidal suspensions:
here the particles are—as a consequence of the production
process—rather polydisperse in their properties (such as size,
interactions, etc.) and therefore a polydisperse mixture of
charged hard spheres (CHSs) is undoubtedly a more appro-
priate model.

For a theoretician, however, a reliable description of a
polydisperse system represents a formidable problem, since
standard methods (as they exist for one- or two-component
systems over a large range of sophisticationz) are—at least at
present—hardly available: computer simulations are dispro-
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portionately more expensive than for one-component
systems—for a recent contribution see Ref. 3—which ex-
plains the lack of a considerable amount of reference data for
polydisperse mixtures up to date; and theoretical concepts
that allow to determine the full phase diagram (including an
explicit determination of the distribution functions of the co-
existing daughter phases) on a quantitative level are scarce
and those few concepts that can be used are rather complex.4
Despite these implications, there is definitely a need to ob-
tain more information about such systems: academic interest
will certainly focus on polydispersity as such, which leads to
intriguing phase phenomena and fractionation effects;* and
technology, on the other hand, will rather be interested in the
properties of realistic polydisperse charged systems, such as
the ones mentioned above.

In a recent study5 we have made a first step to tackle this
problem and have treated polydisperse mixtures of CHS
within the framework of the mean spherical approximation
(MSA). We have used the standard access to polydisperse
systems, which are viewed as mixtures with an infinite num-
ber of components:6 each species is characterized by a con-
tinuous index variable & and the amount of particles in each
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species £ is defined via the distribution function Z(&), which
is positive and normalized, i.e., [(d&Z(£)=1; Z(§)d¢ is the
fraction of particles with species index & e [&,&+d£]. Based
on this picture we have used the expressions that are avail-
able in the literature for the thermodynamic and structural
properties of a mixture of CHS (Refs. 7 and 8) with an arbi-
trary, but finite number of components; they can readily be
generalized to the polydisperse case. It turns out that this
access leads to a so-called truncatable free-energy model,*
where the thermodynamic properties can be expressed by a
finite (but still rather large) number of generalized moments
of the distribution function Z(£) that characterizes the sys-
tem. Thus the formally infinitely many coexistence equations
that determine phase equilibrium in a polydisperse mixture
are mapped onto a finite set of coupled, highly nonlinear
equations in these generalized moments which can be solved
with suitable algorithms. Access to describe polydisperse
mixtures via the truncatable free-energy model seems to
be—at least at present—one of the rare viable routes towards
a quantitative determination of the full phase diagram (in
terms of binodals as well as cloud and shadow curves) of
such systems.

However, our MSA approach5 did not lead—as it might
have been expected—to quantitatively correct results, since
MSA is definitely inappropriate to calculate the phase dia-
gram of charged systems. This failure of MSA can be traced
back to subtle physical phenomena, which are characteristic
for charged systems; these are revealed in careful analysis of
computer simulation data” " and can be confirmed in theo-
retical studies:'®* in the vicinity of the phase boundaries
neutral ionic clusters of different size (i.e., dimers, trimers,
...) are formed as a consequence of the strong Coulomb at-
traction while free ions or charged clusters play only a minor
role. And MSA, being a linearized theory, is definitely inad-
equate to treat strongly interacting systems. This deficiency
is reflected by the large discrepancies in the location of the
critical point between MSA data and computer simulation
results, which—at present—can be considered as exact ref-
erence data: for the bidisperse mixture (RPM) critical param-
eters obtained within MSA differ by a factor of ~1.6 in
temperature and ~0.2 in density from the simulation data.

To make up for this deficiency we propose in the present
contribution a more sophisticated concept that explicitly
takes into account these association effects. To this end we
have introduced the framework of minimal size neutral clus-
ters (MSNCs), i.e., an idea that had turned out to be success-
ful in studies both of the charge-symmetric and the size-
asymmetric RPMs (see below). In this concept it is assumed
that all the clusters formed in a charged system upon asso-
ciation are represented by the MSNC, i.e., by dimers in the
1:1 RPM, trimers in the 1:2 model, and (m+1)-mers in the
1:m model. In an effort to treat such a system of neutral,
polar clusters, the polymer MSA (PMSA) was successfully
utilized: PMSA (Refs. 19, 21, and 24-26) is a MSA version
of the product-reactant Ornstein-Zernike app1r0ach,27"30
which, in turn, originates from Wertheim’s multidensity
integral-equation theory for associating fluids.*"* A prelimi-
nary presentation of the formalism along with the first results
has been presented in Ref. 33. In recent contributions PMSA
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was used to predict the liquid-gas phase diagram of 1:1 and
1:2 size-symmetric primitive models for electrolytes.l(’)’21 Al-
though agreement between this theory and corresponding
computer simulation was still not perfect, substantial im-
provement over the simple MSA predictions was achieved;
the critical temperature differs now by a factor of 1.3 and the
critical density by a factor of approximately 0.6, respectively.
We also mention applications of this concepts for a 1:m
highly size-asymmetric RPM.%

In an effort to treat the polydisperse mixture of neutral
clusters within the PMSA, we have generalized the corre-
sponding expressions for a mixture with a finite number of
components to the polydisperse case. Again, the resulting
expressions for the structural and thermodynamic properties
depend only on a finite number of generalized moments of
Z(¢), i.e., we deal again with a truncatable free-energy
model. Based on this concept we have considered two-phase
coexistence and have derived the corresponding coexistence
equations for the unknown generalized moments of the co-
existing daughter phases. We have determined the full phase
diagram (in terms of binodals, as well as cloud and shadow
curves) and the distribution functions of the daughter phases
which allow us to study fractionation effects on a quantita-
tive level. We have considered in detail the phase behavior of
two polydisperse mixtures, one of them being size symmet-
ric, the other one size asymmetric. The results are presented
and discussed.

The paper is organized as follows: In Sec. II we present
the model and discuss the consequences of the MSNC con-
cept on the distribution function that characterizes the sys-
tem. In Sec. III we present the PMSA formalism that helps us
to describe the polydisperse mixture of the neutral, polar
dimers; we derive expressions for the thermodynamic prop-
erties and present the set of equations that fix phase equilib-
rium. Section IV is dedicated to the discussion of our results:
we start by specifying the systems and then present and dis-
cuss the results we have obtained for the phase diagrams and
the distribution functions of the coexisting daughter phases.
We finally present an estimate of how the location of the
critical point might vary with size asymmetry and polydis-
persity and close the paper with concluding remarks.

Il. THE MODEL AND DISTRIBUTIONS
A. The multicomponent model

We introduce our polydisperse model via its discrete,
multicomponent  representation  and  consider  an
M-component mixture of CHS immersed in a dielectric con-
tinuum with a dielectric constant € at a temperature 713
=(kgT)™'] and a number density p. Particles of species i are
characterized by a diameter o; and a charge ez; (e being the
elementary charge), and a (partial) number density p;=N;/V,
where N; is the number of the particles of species i and V is
the volume of the system; therefore, p=2;p; and we further
introduce the concentrations, x;=p;/p with X;x;=1. The pair
potentials @;,(r) acting between the particles of species i and
J are given by
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@ ( ) ©, 0osr= O-ij (1)
(r)=

v e2z,-zj/er, o <r=sco,

where 0;;=(0;+07;)/2. The system is neutral, thus the follow-
ing relation is satisfied:

2)(,2,':0. (2)

B. The polydisperse model

To extend the discrete model presented above to the
polydisperse case one has to make the transition from the
discrete species index i to a continuous index variable &,
which is distributed according to a positive, normalized dis-
tribution function Z(£). This function replaces the discrete set
of concentrations {x;}, and summations over the index i now
become integrations with respect to the continuous variable
¢&. Since for the present model each species is defined by its
size and charge, o and z, the most appropriate choice for £ is
the set of the continuously distributed random variables, o
and z, distributed according to the distribution function
Z(0,z) =0, which satisfies the following normalizing condi-
tion:

f daf dzI(o,z) = 1. (3)
0 —00

Further, the potentials of the discrete systems ®;;(r) are re-
placed by their respective counterparts in the polydisperse
system O(r;oy,21,02,22).

It is convenient to split the distribution function Z(o,z)
into two contributions according to

Lo,2) = a,T.(0,2) + a_ T (0,z), 4)

where Z_.(o,z) describe the distribution and a, quantify the
fractions of positively and negatively charged particles, re-
spectively. Thus

Z,(0,z)=0 forz<O0,

S)
Z(0,2)=0 forz=0.
Each of the functions Z,(o,z) is normalized
f daf dzZ.(o,z)=1. (6)
0 —0

In the polydisperse case the charge neutrality condition (2)
reads

@ (z), +alz)_-=0, (7)
where
(2).= f d(rf dzzT.(0,z). (8)
0 —

As it will become evident in a later context it is useful to
relate our polydisperse CHS mixture to a binary (bidisperse)
CHS mixture; to this end we define integers m, and m_ via
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where m, and m_ are integer numbers with no multipliers in
common. If we then consider the limit that the distribution
functions Z, (o, z) of the system become more and more pro-
nounced with respect to z, until they become delta functions
located at (z), and (z)_, respectively, then we end up with an
m, :m_ primitive model of an electrolyte. Thus, our polydis-
perse system can be seen as a polydisperse generalization of
the corresponding primitive model for an electrolyte.

Further, relation (9) enables us to establish a connection
between the polydisperse CHS fluid in question and a (poly-
disperse) fluid of MSNC. To this end we proceed as follows:
we assume that all MSNCs are of the same size and that—
similar to the case of a bidisperse CHS ﬂuid19‘21—they con-
sist of m_ positively charged particles with charge z, and of
m, negatively charged particles with charge z_, satisfying the
“global” charge neutrality condition

9)

m_
=2 (10)
m,
However, in the polydisperse case this condition is not suf-
ficient to construct such MSNCs and one has to impose, in
addition, “local” charge neutrality condition, which reads

z,dN (z,) == z_dN_(z.), (11)
with dN,(z.)=a.F.(z.)|dz.| and

F.(z) =f doT,.(0,7). (12)
0

This additional charge neutrality condition guarantees that
the total charge accumulated by particles with a charge “lo-
cated” in the interval dz, around z, has the same absolute
value as the total charge accumulated by particles with a
charge in the interval dz_ around z_, where, in addition, z,
and z_ are related via (10).

From the above relations one can easily deduce

F()= %P}(— %z> . (13)
m_ m_
Thus the concept of the MSNC approach extended to the
polydisperse CHS fluid introduces a restriction on the distri-
bution functions F,(z) and F_(z) which will have conse-
quences on the results (see Sec. IV).

So far we have been considering the general case of the
distribution function Z(c,z), which allows an independent
variation of the charge and of the size of the particles. In
what follows we will introduce a distribution function, which
strongly correlates these two parameters, i.e.,

2(0.2) =fi<a>5<z—<z>1&>, (14)
where
<0-2>¢= f dongi(g) (15)
0

and the distribution functions f, (o) are normalized
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fwd(rfi(a)= 1. (16)
0

The first reason for this particular choice for the distri-
bution functions is the fact that the factorized ansatz (14)
reduces the amount of numerical efforts required to solve the
coexistence conditions (see below). In addition, this choice is
also physically sound, since the functional form (14) implies
that the charge of the particle z, is proportional to its surface,

o
s = <Z>1__ .
(0?).
Again, the f. (o) are not independent; to derive their relation,

we first calculate the F.(o) for this particular choice of
Z(o,z)—see Eq. (14)—and obtain

(17)

RN o
Fi(z) _ft(o-i)2|<z>i| &ta (18)
with
N RN
==V "

Using then relation (13), which is valid for a general distri-

bution, we obtain via simple manipulations and along with
(9) and (17)

fo)=

(o), ( 0)

(02>+>
<O’2>_f+ .

(o)

lil. LIQUID-GAS PHASE EQUILIBRIUM OF THE
POLYDISPERSE EXTENSION OF THE 1:1 PRIMITIVE
MODEL FOR ELECTROLYTES

Above we have extended the MSNC approach to a poly-
disperse CHS fluid. In the following we shall focus on the
generalized 1:1 primitive model for an electrolyte, which in
the MSNC framework consists of a polydisperse mixture of
neutral dimers, each formed by two oppositely charged hard
spheres; the dimers are thus polar. Thermodynamic proper-
ties, which are needed to calculate the phase diagram of such
a fluid of dimers can readily be obtained via the PMSA.*!
This concept will be introduced in the following, first for the
multicomponent mixture and then generalized to the polydis-
perse mixture.

A. PMSA thermodynamics for the multicomponent
polar hard-sphere dimer fluid

Again, we start with a discrete version of the model. We
consider an (M/2)-component mixture of dimers in which
each dimer is built up of two tangentially bonded charged
hard spheres with charges ez, and diameters of,. Here the
index a denotes the species of the dimer and the index «a,
which takes the values + or —, characterizes the positively
or negatively charged hard-sphere site of the dimer; due to
charge neutrality, ez{=—ez?. The number density of each
dimer species in the system is p“=N%/V, where N“ is the
number of dimers of type a.

J. Chem. Phys. 123, 124501 (2005)

The concept of PMSA for this model is based on the
generalization of the Ornstein-Zernike equation, which reads
in k space21

hel(k) = &45(k) + 2 p 2 & (k) ahJy(k), (21)
along with the PMSA closure relations

c’;%(r) -EBdY (r) + 5(r— oﬂﬁ) r> oﬁbﬁ,

o-“
(22)

Wy (r)=-E, r<ol

where off’ﬁ— 5(0” +0’ ) h¢ ﬁ(k and é“b (k) are matrices
whose elements are the Fourier transforms of the correspond-
ing matrices in r-space h‘;%(r) and czl;;(r),

HPa () s () KD ()
a ab b b
ha%(r)= haAﬁo(V) hZAﬁA(”) hZAﬁA(r) s

agﬁo(r) haB:B (}") aBﬂB(r)

Cq ﬁo( ) C“oﬁ (r) aOﬁB(r)

CZfB(V) = CaA,Bo(r) caABA(r) aA'BB(r)
o) Canp, (1) g, (1)

The matrices t‘;%, a, and E occurring in the above expres-
sions are defined as follows:

51117
(t BKL= o B = 25 L0k 0150, 8p. + OkpO1aGarIp],

(@)= ag,=1— S+ koL

(E)KL =Eg = 50K50L-

Here the subindices K and L can take each the values 0, A,
and B, and characterize the bonding states of the correspond-
ing particle:21 0 denotes the unbonded state and A and B
denote the A-bonded and B-bonded states, respectively. The
partial total correlation functions h 178 (r) are related to the

site-site total correlation functions A, (r) via
Hogp(r) :% By, (1) (23)

Since the explicit solution of the PMSA has been derived
carlier”’ for the most general case of a multicomponent mix-
ture of charged hard-sphere flexible chain molecules, we will
skip here further details and present in the following only the
final expressions, specified for the model in question. Similar
as in the case of the “conventional” MSA for a multicompo-
nent mixture of CHS,”® the solution of the PMSA (Ref. 21)
can be reduced to the solution of one single nonlinear alge-
braic equation for the so-called scaling parameter I" intro-
duced by Blum’ and Blum and Hcsye.8 In an effort to guar-
antee formal consistency we stick in the present contribution
exactly to the same nomenclature as introduced in Ref. §;
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note that therefore the index n appearing in some of the
subsequent expression has no relevance. In the present case
this equation takes the following form:

M2 T 2
F2=7T,3*2 p° E[FZ(ZZ_M>]
a=1

a 2A + Wﬁn

aTa a\2p
F;EE@P@)H(ZZ—M) R

+ —~
-« @ 2A + wQ),
where we have introduced 8" =-ef/€ and A=1-7{;/6,
r4=(1+0d)7", (25)
M2
(=2 p'2 ()", m=1.23, (26)
a=1 a
M2 rere
P,= 2 p") 2 ozalt+ =02+ (092 ¢
a=1 a 20'?._
(27)
and
M7z ay2( a2
Q,=2 p{E (04)°T + %rzri} . (28)
a=1 a -

Hereafter we are using the notation = ,(...),=(...)_+(...),.

Once we know the scaling parameter I" we can calculate
all the thermodynamic properties of the model. Following
Bernard and Blum,34’35 one finds

Uel . M2 a arara
Br=- ]S p| TS (42 - s
14 a=1 a O,
ﬁ2
b (29)
2A + mQ),
1"3
BA=BA™ + BU" + —, (30)

3

and

% vt ag( ap, |\
BP—i=pPi ——— S T 3
N 2A + 7Q),,

N 3wy wg

where U® is the electrostatic contribution to the internal en-
ergy, A is the Helmholtz free energy, and P is the pressure.
The superscript “ref” denotes the corresponding properties of
the reference system (see below), N is the total number of
dimers in the system, N’ :EQ’ZIZN“. Expressions (29)—(31)
represent the generalization of the corresponding expressions
derived earlier™* for a fluid of dimerizing CHS in the limit of
complete association.

Using the standard relation between the free energy and
chemical potential we find

J (A
Br'=pB_—,

ap (V) = B+ AL, (32)

where

Phase coexistence in a polydisperse charged hard-sphere fluid
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Au == B TS (T - ST
p oyl

N P, |: ) P, 7P,

2A + (), I oA+ <,
i, 1
X{ —2=-=2 D) | (. 33
with the explicit expressions for the partial derivatives,

oP, rere

P =§<z‘;)zrz+ 2o [(09)%2% + (09)%], (34)
o, N € (o
PDIC RN e (35)

For the reference system we use a fluid of uncharged
hard-sphere dimers, whose properties can be calculated using
Wertheim’s thermodynamic perturbation theory (TPT).>%¢
According to this concept, the Helmholtz free energy of a
fluid of hard-sphere dimers A™ can be written as a sum over
three terms,

Aref:Aid+ AAhs+ AAaSS, (36)

where A'Y is the ideal contribution to the free energy, AA™ is
the excess free energy of the multicomponent hard-sphere
fluid, representing a completely dissociated dimer fluid, and
AA™ is the contribution due to the formation of the dimers,
which is given by36

B~——=-2 p,Ingi. (37)
14 a=1

where g{? is the contact value of the radial distribution func-
tion between the two uncharged hard spheres, (+,a) and
(-,a), which form the dimer of species a upon association.
For the contact value of the hard-sphere fluid g{? we have
used the Percus-Yevick expression8

1 . moo?,
A 4A%00

aa

84+-= (38)

The Helmholtz free energy is related to the pressure and
the chemical potential via standard thermodynamic relations

which now read

1% 9 [ BA™ v 1%
ﬂpref_zpd_<18 ): 1 +ﬁAPhS]7d +BAPaSS]W

N gpd\ N
(39)
and
. J Aref . ) .
e e R N
p @

where AP™ and Au™ are contributions to the pressure and
the chemical potential of hard-sphere particles with indices
(a,a) of the multicomponent hard-sphere fluid, which repre-

sents a completely dissociated dimer fluid. For these quanti-
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ties we have used the semiempirical expressions due to Man-

soori et al.”’ Further,
ass 1 1
BAP =—g’7T)\lé"§ ’7T)\2§2 1+3A§ (41)
a;ass aa 1 3
PAMSS = =In gt = —m\ 2 ()
N P S A SRS, S 07 N
6 | 2074 T T el
with
M2
G_aa
d 43
2poﬂaA+ 1700, o “3)
M2 oo
A= E p* a
oA+ 1 Lmatatl,

B. PMSA thermodynamics for the polydisperse polar
hard-sphere dimer fluid

Generalization of the above expressions for the thermo-
dynamic properties from the multicomponent system to the
polydisperse fluid is rather straightforward: again, we intro-
duce the distribution function [Z(o,z) or f.(o)] and replace
throughout summations over the discrete species index a of a
dimer by integrations over its continuous counterpart o. The
latter fixes, due to (17), the charge of the ions; as a conse-
quence of relation (20) between f,(o) and f_(0o), it is suffi-
cient to specify the distribution function of either type of the
ions. Without loss of generality we choose f. (o), which now
completely defines the polydisperse polar dimer fluid we
want to study. From (17) we find that the diameters of the
two sites of each dimer are related via

_ )

o _\Jlor (44)
g, <02>+

This functional relation, o_=o0_(07), will be used implicitly

in the subsequent expressions.
With all these in mind, Egs. (24)—(28) become

2= 77:8*1)+f do,f.(0,)
0

X 2 |:Fa(o-a)<za -

2l (o )T (o)
+

o, + 0

XH(za 7T(‘T)P)Eor(a , 45)

w(0,)°P, ) ’
2A + Q)

@ 2A + 7Q)

where p,=p/2 and T'(0,)=(1+0,)"" and A as defined
above; further,

J. Chem. Phys. 123, 124501 (2005)

In= p+f d0'+f+(0'+)2 (o))", m=1,.2,3, (46)
0 a

ﬁn = P+f d0+f+(0+){ 2 2ol o(0y)
0 @

I'(o)I (0
AL CR

o+ 0

[(0'+)ZZ— + (U—)2Z+]} s (47)
and

ﬁn = P+f do.f.(0,) |:2 (O'a)sra(o-a)
0 a

2(0,)%(0)?
GO

o+ o

r+(a+)r_(a_)] . (48)

The corresponding generalizations of the expressions for
the internal energy (29) and the chemical potential (32) read

el o0
IGU_ == p+J d0+f+(0+)[F2 (Za)zra(a'a)
0 @
D2
_ 2Z+Z_F+(O'+)F_((T_):| + 7TPV! — , (49)
oyt o 2A + 7,
Bula,) = Bu(a,) + BAu(0,); (50)

in above expression for Bu"(o,) we need the generalization
of expression (42) for BAu**S to the polydisperse case,
which becomes

1 7004 ]

A 2 =1
pAw(a) H[A+2A2(o++<r_)

- %W{)\lg (o-a')s

+ x{i@i (0.3 (oa>2”, (51)

with
* o, + 0
AN = do.f.(o , 52
! p+J0 Silo) (o, +0)A+ %770;0'_{2 (52)
s 20,0
N, = do.f.(o 53
2 p+JO AN (0, +0)A+ %7TO'+0'_§2 (53)

and

BAL(a,) == BT (2)To(a,)

_ 2 b ()T (o)

o, +t0o_
7715,, OP
+ o~
2A + (), of(o,)
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P

_2A+wﬁn<5f(‘7+)_§za:( g )} ’

(54)

with the explicit expressions for the functional derivatives,

2 I (o)l (o)
5f( o) =2 @ Talog) + = F=
X[(o)?z_+ (0.)*z,] (55)
and
8, ; 2(0,)%(0.)?
o) %(a T (o) + e ()T (o).

(56)

For the pressure the expression for the polydisperse version
coincides with the one of the multicomponent case (31); the
only difference becomes visible in the expressions for the
generalized moments ¢,,, 13,1, ﬁn, N\, and A,: in the polydis-
perse case they are now defined by relations (46)—(438), (52),
and (53), respectively. The thermodynamic properties of the
polydisperse hard-sphere reference fluid, AP™ and Au™(o,),
that are required in the expressions for the pressure (39) and
for the chemical potential (40), are generalizations of the
semiempirical expressions due to Mansoori et al®” to the
polydisperse case.>®

C. Phase equilibrium

In this contribution we focus on two-phase equilibria,
when at a given temperature 7' the parent phase, character-
ized by the distribution function f< )((r) and the number den-
sity p separates into two coexisting daughter phases, with
the dlstrlbutlon functions f )(0') and ﬁ (o) and densmes p( )
and p+ ; the properties of the species with index “—” can be
calculated from these quantities via the relations presented in
the preceding section. Hereafter superscripts 0, 1, and 2 de-
note the properties of the respective phases. Phase equilib-
rium conditions include (i) conservation of the total volume
of the system, (ii) conservation of the total number of the
particles of each species, (iii) equality of the chemical poten-
tials of particles of the same species in the coexisting phases,
and (iv) equality of the pressure in the coexisting phases.

The first two conditions lead to the following relation
between the distribution functions of the coexisting
phaseS'S’39
P2 Pi) (0) ( - (O) (1) (1)

A CAE ﬁ’” RUCHE WP+ UCAE
P+

(57)

A further relation between ff)(o:r) and ff)(o;) follows from
the equality of the chemical potentials, i.e., condition (iii),

(2)
(o) =f<3>(a+>;% expl BAL], (58)

where

Phase coexistence in a polydisperse charged hard-sphere fluid
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D - w o TP YD, (59)

where the superscript “ex” denotes the excess (over ideal
gas) value of the chemical potential and the square brackets
indicate functional dependencies. Eliminating from these two
relations either ff)(o:r) or Al)(o;) we get

19(0,) = f20,) 0¥, T.p0; o1, 02 [0 (o)),
k=1,2, (60)

Au= p™(o,T:p

where

(k)(0'+yT PﬁrO)’p+ ’p+ fik)(a:r)])

_ A2 = pOH1 = 301 — exp(BAL™M T 61)

(0" =P = (0} = p)exp(BAL™)

Equation (60) contains three unknown quantities, i.e.,
p+, p(f), and either fil)((n) or fiz)(a;). Additional two
equations, which involve these yet undetermined parameters,
follow from the equality of the pressure in the two phases

P(T;:p0, 1A = P(T; 62 [£P]) (62)

and from the normalizing conditions

J dofP(e)=1, k=1.2. (63)
0

Relations (60), (62), and (63) represent a closed set of equa-
tions for the unknown densities pik) and the unknown func-
tions f )(0'+) with k=1,2; however, their direct solution is
from the numerical point of view in practice not feasible,
since they have to be solved for each of the infinitely many
values of o,.

From the analysis presented in Sec. III B it becomes ob-
vious that polydisperse mixtures of polar hard-sphere dimers
treated within the PMSA belong to the class of truncatable
free-energy models,* this means that their thermodynamic
properties can be presented in terms of a finite number of
generalized moments of the distribution function, f. (o).
Thus the phase equilibrium conditions for the system pre-
sented above can be mapped onto a finite set of coupled
nonlinear equations in those moments. Since this concept has
been discussed at length in earlier contributions and was ap-
plied to several different models™**! we will skip here the
details and present only a brief summary of the method.

In the present case we have a set of 18 algebraic equa-

tions for the 14 generalized moments §(k) (k) )\ @ P<k) and

Q(k) (with k=1,2 and m=1,2,3), for the two densities p(l)
and p(z), and for the two coupling parameters of the two
coexisting phases IV and T'®. Using relation (60) together
with the definitions of the moments, (46)—(48), (52), and
(53), and dropping for simplicity for the moment the long list
of arguments in the 0, by putting

Q(k) = Q(k)(0-+7T piO)’P+ ,P+ [F(l)’{g)\ﬁnﬁn}(l)l
TP}, (64)

we obtain the following 14 equations:
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{0 = p f do, fNo)0PY (0,)", m=1,2,3, (65)

P =pl f do+ﬁ°><a+)Q<k>{2 7ozl ()
0 @

'Y )%
REESCA S CR)

o, +o_

[(0)2 + (0_)22+]} , (66)

a0 =p J do+ﬁ°><a+>Q<k>[2 (02T (o)
0 a

+ ﬁrﬁ“(m)r@(m)} , (67)

o, +0_

[ aof
0

(o) Q% SERRE : (68)

1
(o, + o )A® + E’irozr(r_g(zk)

M=p [ do?
0

(o) 20,0- L (69

1
(o, + 0 )AP 4+ 5770;0'_((2]‘)

with k=1,2.

In the above notation the dependence on a set of param-
eters [['® {{NP,Q,} ] is equivalent to the functional depen-
dence on mk)] and hereafter {{NP,Q,}*¥ denotes the set of
the moments {if), k(lk), )\(2k), Ijik), and ﬁ’(ik).

The remaining four equations follow from the normaliz-
ing condition (63),

0

from the equality of the pressure in the coexisting phases

(62),

P(T:p [TV AP, Q1) = PT:p2 [T 0P, Q1))
(71)

and from the equation for the coupling parameter, written for
each of the two coexisting phases,

(PO =mppl? | do /(o0

ngﬁ}(,l

%

20K 4 77'&7)5,

a

X > [rii“(oa)(za—

2I'% (o )T (0)
Lalo)l-to)

o+ 0
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7702 P(k)
2AW 4 7 QX

XH (za )E o F(k)(cr

(72)

Solution of the set of equations (65)-(72) at a given
temperature 7, density pio), and distribution function
X(o,) of the parent phase yields the coexistence densities
pik) and distribution functions fik)(o;) of the two daughter
phases (k=1,2).

In the general case of an arbitrary density pio), the bin-
odal lines will be terminated at a given temperature in two
points, each of them corresponding to two densities. One of
these densities (which is the coexistence density of one of
the daughter phases) is equal to the density of the parent
phase p+ The set of these bmodal terminal points deter-
mined at different values of p ) forms the so-called cloud
and shadow curves; by definition they represent the densities
of the coexisting phases with an infinitely small amount of
one phase emerging (shadow phase). The distribution func-
tion of the phase where the density is equal to the density of
the parent phase (cloud phase) coincides—by definition—
with f(o,). Thus the cloud and shadow curves can be ob-
tained as special or particular solutions of the general phase
coexistence problem, when the generalized moments of one
phase are equal to those of the parent phase. Only if p(+o)
equal to the critical density, the two binodal lines meet at a
critical point.

The numerical solution of the set of equations (65)—(72)
was realized using a Newton-Raphson method. For the initial
values of the unknowns we have used the corresponding
quantities that we had obtained from the solution of the bid-
isperse case;"” calculations were started at relatively high
temperatures and for a low degree of polydispersity. The fi-
nal solution is then obtained by gradually lowering the tem-
perature and by increasing the polydispersity to the desired
values.

IV. DISCUSSION
A. The distribution functions

Similar as in Ref. 38 and for reasons explained there
(Sec. IIC) we have chosen for the distribution functions
fio)(a') of the mother phase beta distributions, given by*

1
0) [
- <md*>B(y+, )

O_(tmax) O_(tmax)

X0 (™ — )0 (o), (73)

where ©(x) 1s the Heaviside step function, B(vy,,v,) is the
beta functlon and vy, and v, are related to the first (0
=(0o) 0)) and to the second ((02>(0)) moments by

O'(imax) - 0'(10)(1 + DLO )
V= O_(imax) D(io) ’

(74)
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0__('_max) _ 0_‘(*0)
V.= (T)% (75)
with
DY = 1(0)) - 1 (76)
according to (20) the parameters o™ are not independent,

ie., o'(_max) =o'imax)/ K, where K is
"o N 14D
Once we have determined the daughter distribution func-
tions, fik)(a), k=1,2,—see below—we shall determine, like-
wise, first and second moments which we denote by <0')ik)
and (02>ik), k=1,2; in the figures we shall display Df),
which is then calculated according to (76). Even though the
daughter distribution functions fik)(o) will certainly not be
beta distributions, we have proposed in Ref. 5 a procedure
that analyzes the shapes of the fik)(o) in terms of the “clos-
est” beta distributions fﬁk)‘beta(o)—for further details we refer

to Ref. 5. These functions will be displayed in the following
graphs along with the fik)(a).

B. The systems

Unfortunately computer simulation results for polydis-
perse CHS mixture which we might be used to test the ac-
curacy of our approach are currently not available. We there-
fore start to compare the predictions for the critical
parameters calculated with our approach with the corre-
sponding values obtained via Monte Carlo (MC) simulations
for the 1:1 primitive model for the electrolyte with size
asymmetry:lz’13 this bidisperse model can be considered as a
limiting case of our polydisperse CHS mixture where the
width parameters Dio) of the distribution functions ﬁo)(a)
tend towards zero, i.e., D(io) —0, and the ff_f))(cr) reduce to the
corresponding Dirac delta functions. We consider this com-
parison as very important since it allows us to estimate the
limits of applicability of our approach.

Next we proceed to polydisperse CHS mixtures, which
are now characterized by a finite degree of polydispersity,
and consider two different systems:

(1) the first system, labeled as “I,” is a polydisperse
(size-) symmetric CHS mixture, which can be consid-
ered as a generalization of the size-symmetric primi-
tive model for electrolytes to the polydisperse case,
thus 0'(0)=0<0);

(ii)  the second system, labeled as “II,” is a polydisperse
mixture of CHS which is asymmetric in size; it can be
considered as a polydisperse extension of the 1:1
primitive model for electrolytes with an asymmetry in
the size of the HS particles; here we chose 0<_0)

=0.70".

All our numerical calculations for systems I and II were
carried out using the distribution functions fﬁo)(o) introduced
above with o-imax)=2(fio), DE_rO)=0.01, and |<ZTiO)>|= L.

Phase coexistence in a polydisperse charged hard-sphere fluid
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FIG. 1. Critical temperature T, (top) and critical density p,, (bottom) vs 7
:(r(_o)/(r(f) for the bidisperse size-asymmetric 1:1 primitive model for elec-
trolytes, as predicted by MSA (dashed lines), PMSA (solid lines) and MC
simulations [filled triangles (Ref. 12) and filled squares (Ref. 13)]. The
dotted lines connecting the symbols are shown to guide the eye.

In what follows, the temperature 7 and the densities p of
the system will be expressed by the dimensionless quantities
Tk=kT0'(+O)e/ e* and p*=p(0'(+0))3, respectively. The quantities
we calculate are characterized by an upper index k which
assumes values of 1 and 2 and specifies the daughter phases
which are fixed as follows: index “1” will refer to the low-
density (gas) phase, while index “2” will refer to the high-
density (fluid) phase. Further we introduce the size ratio 7
=%/ 0'5_0).

C. Results
1. Results for the bidisperse mixture of CHS

In Fig. 1 we display the predictions for the critical pa-
rameters T, and p_, of the size-asymmetric 1:1 primitive
model for electrolytes obtained via the MSA, the PMSA, and
via MC simulations for different degrees of size asymmetry
7. On a quantitative level, both MSA and PMSA fail with
respect to the simulation data; this is well documented in the
literature'*"* and therefore not surprising. In the range of
0.6=7=1, MSA fails in the critical temperature by a factor
of ~1.6 and in the critical density by ~0.2. The fact that the
corresponding factors for the PMSA data are distinctively
closer to 1 (i.e., ~1.3 for the temperature and ~0.6 for the
densities) indicates that PMSA brings along a substantial im-
provement over the MSA it is able to grasp (at least partly)
the complex scenarios encountered close to the critical point
in the RPM—but certainly not in full detail. On a qualitative
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FIG. 2. Phase diagram (T" vs p”) of the size-symmetric polydisperse CHS
mixture (system I) specified in the text. Cloud and shadow curves are rep-
resented by the solid lines (as labeled), binodals by the broken lines: the
values of the densities of the respective parent phase p*© can be identified
from the intersection of the binodal with the cloud curve: p"©=0.04, 0.1,
and 0.0639 (critical binodal). Two pairs of points (A and By, k=1,2) are
chosen on the two [p"®=0.04] binodals and on the cloud and shadow
curves which are specified in Table I. The dash-dotted line denotes the
binodal curve for a size-symmetric (bidisperse) primitive model for electro-
lytes [with diameters 0'5:)):0'(_(»] treated within the PMSA (Ref. 19).

level, both MSA and PMSA are able to describe the increase
of TZr and pzr, with decreasing size-asymmetry parameter 7
for 7 values down to ~0.33 and ~0.23, respectively. As 7is
decreased further, simulations predict a decrease in T:r and
p:r, while the corresponding MSA and PMSA curves con-
tinue to increase.

We note that in earlier studies it was concluded that
MSA provides a qualitatively wrong dependence of the criti-
cal parameters on the size-asymmetry parameter 7. In these
contributions definitions for the reduced temperature and the
reduced density were used which are different from the

12,13

present  one: ?:kT[%(l + 7')](1'(+0)e/e2 and ﬁ:p[%(l
+7) 0'(0)]3. These definitions introduce an additional depen-

+
dence of the critical parameters on 7 via the factor %(1 +7)

and are thus less appropriate for this analysis.

2. Results for system |

In Fig. 2 we present the phase diagram of the polydis-
perse system I which is size symmetric. We show the cloud
and the shadow curves, along with three binodals for three
selected densities, one of them begins the critical density,
p.,=0.0639. The binodal curve for the size-symmetric (bid-
isperse) primitive model for electrolytes treated within the
PMSA is shown for reference. On the binodal for p"©
=0.04 and on the cloud and shadow curves two pairs of

J. Chem. Phys. 123, 124501 (2005)
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FIG. 3. Comparison of the phase diagrams (in terms of the cloud and
shadow curves and the critical binodals) for the size-symmetric polydisperse
CHS mixture (system I) calculated via the MSA (Ref. 5) (dashed lines) and
the PMSA (solid lines).

points have been chosen (labeled A; and By, k=1,2) which
are specified in Table I, for these pairs of state points the
daughter distribution functions, fik)(a), k=1,2, are displayed
in the subsequent Figs. 4 and 5 and are discussed in the text.
In Fig. 3 we have redrawn the PMSA phase diagram of Fig.
2 (in terms of cloud and shadow curves and the critical bin-
odal) and have compared these curves with the correspond-
ing data obtained via the MSA reported in Ref. 5.
Compared to the bidisperse version of the system (Fig.
2) we find—similar as in the MSA—that the critical density

and the critical temperature are shifted to larger values

*#(polydisp) , _*(bidisp) __ #(polydisp) ; --*(bidisp) __ .
[Perpaisa / Ocr.pmsa ~ 1-35 and TcréPMSA IT o pmisa 112];
however, with respect to the MSA,” this shift is more pro-

nounced within PMSA. From Fig. 3 we learn that PMSA
shifts the critical point—as desired—to larger p" values and
to smaller 7" values with respect to the MSA; the corre-
sponding  factors  are T:r;MS Ni TZr;PMS A~ 12 and
pjr;MS N; p:r;PMS A~ 0.4. Consequently, the cloud curve and the
binodal are much more symmetric within PMSA than within
MSA.

We continue by discussing fractionation effects: at the
level of the daughter distribution functions no considerable
qualitative differences with respect to the MSA data’ are ob-
served; for completeness we display in Figs. 4 and 5 the
daughter distribution functions fik)(a') of the two pairs of
points (A; and By, k=1,2) specified in Fig. 2 and in Table 1.
Similar as observed for the MSA, the daughter distribution
functions ﬁk)(a) can be represented reasonably well by beta
distributions, fﬁk);be[a(a), k=1,2. The more quantitative infor-
mation about fractionation can be obtained from the mean

TABLE 1. Specification of selected pairs of points (index “1”—low-density gas phase, index ‘“2”—high-density
fluid phase) chosen in the phase diagram of the size-symmetric polydisperse CHS mixture (system I: points A,
and By, k=1,2) indicated in Fig. 2 and of the size-asymmetric polydisperse CHS mixture (system II: points Cy,

k=1,2) indicated in Fig. 8.

System Point Localized on T p'M p'®
System I Ay, A, Binodal curve [p"©=0.04] 0.055 0.0115 0.184

By, B, Cloud and shadow curves 0.055 0.189% 107 0.177
System II Cy, G, Cloud and shadow curves 0.055 0.113x 1077 0.254
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FIG. 4. Parent [f((»((r)] (thick full line) and daughter [f<]‘)((r k=1,2] dis-
tribution functions (full lines) for the size-symmetric polydisperse CHS mix-
ture (system I) calculated for points A; and A,, located on the [p"©=0.04]
binodal in the phase diagram (see Table I and Fig. 2). Broken lines:
ff_f);bem(a) as defined in the text. k=1—gas phase, k=2—fluid phase.

value (Fig. 6) and the width (Fig. 7) of the distribution func-
tions of the daughter phases. The results for (cr)ik)(:(a')(_k)),
k=1,2, show a similar behavior as in the MSA study (cf. Fig.
4 in Ref. 5), apart from the fact that the mean values of the
daughter distribution functions vary now over a broader
range. In contrast, the widths of the ﬁk)(a show a distinc-
tively different behavior: while in the MSA the D ) values of
the daughter phases were always smaller than Dg))(:0.0l),
this is now different in the PMSA framework. Obviously, for
densities below the critical density and for higher tempera-
tures, D ? can exceed in the fluid phase (k=2) the values of
D(0 which means that for this parameter range the daughter
dlstrlbutlon functions of the fluid phase is broadened. In ad-
dition, for p* < p:r, the curves for Dik) indicate that for lower
temperatures the width of the daugh_ter distribution functions
is larger in the fluid phase than in the gas phase, while for
higher temperatures, D(1)>D<2 , which causes a looplike
shape of the D(k) curves (broken line in Fig. 7). A partlcularly
nonmonotonic behavior is observed for the values of D
along the shadow curve, which is in distinct contrast to the
results obtained within MSA.

Finally, and similar to the MSA, the curves of the aver-
age (positive or negative) charge of the particles as functions

5 T T T T T T T

8

10) = £200) ®

4r fi'(o) .
3 -
2 .
1 f— -
ol

0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIG. 5. As Fig. 4 for points B; and B, located on the cloud and shadow
curves of system I (see Table I and Fig. 2).

FIG. 6. (0)“[=(0)], k=1,2, as defined in the text (cf. Sec. IV A) for the
size-symmetric polydisperse CHS mixture (system I) along three binodals
for the parent phase densities p*®=0.04 (broken line), p"©=p. =0.0641
(full line), and p*©=0.1 (dashed-dotted line), and along the shadow curve
(thick full and thick broken lines). The dotted vertical line through
((r)(k /0'(0)—] separates the gas (left) from the fluid (right) region. Note that

this vertical line represents the <0’>(k)/ U'(O) values for states on the cloud

curve.

of the temperature show a similar behavior as the one ob-
served for the ((r)ik), which is certainly due to the assumed
relation between charge and size of the particles, i.e., Eq.
(14); we have not displayed these results.

3. Results for system Il

The size-asymmetric case of a polydisperse mixture of
CHS, i.e., system II, has a richer phase behavior and is thus
more interesting. We start again with the PMSA phase dia-
gram in Fig. 8, showing the cloud and shadow curves, along
with three binodals for three selected densities, i.e., p*
=0.04, 0.2, and 0.102 (critical binodal). For reference we
have added the binodal curve for the size-symmetric (bidis-
perse) primitive model for electrolytes, treated within the
PMSA. In Fig. 9 we show the phase diagram of system II,
comparing now PMSA with MSA. Again, the daughter dis-

0.08 T T T T T

T*

T

0.075

0.07 i~

0.065

0.06 |

0.055 L

0.005 0.006 0.011

0.007 0.008 0.009 0.01
FIG. 7. DY[=D"], k=1.2, as defined in the text (cf. Sec. IV A) for the
size-symmetric polydisperse CHS mixture (system I) along three binodals
for the parent phase densities p"©®=0.04 (broken line), p"®=p. =0.0641
(full line), and p*©=0.1 (dashed-dotted line), and along the shadow curve
(thick full and thick broken lines). Binodals: k=1—gas phase, k=2—fluid

phase; shadow curve: broken line—gas phase, full line—fluid phase.
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FIG. 8. Phase diagram (7" vs p*) of the size-asymmetric polydisperse CHS
mixture (system II) specified in the text. Cloud and shadow curves are
represented by the solid lines (as labeled), binodals by the broken lines: the
values of the densities of the respective parent phase p"© can be identified
from the intersection of the binodal with the cloud curve: p"©=0.04, 0.2,
and 0.102 (critical binodal). A pair of points (Cy,k=1,2) has been chosen on
the cloud and shadow curves which is specified in Table I. The dash-dotted
line denotes the binodal curve for a size-asymmetric (bidisperse) primitive
model for electrolytes [with a diameter ratio of (70)/ O'io)=0.7:| treated within
the PMSA (Ref. 19).

tribution functions for one selected pair of points (located on
the cloud and shadow curves) will be displayed in the fol-
lowing.

We observe a distinct influence on the shift of the critical
point (both with respect to temperature and to density) as we
compare the data of the bidisperse and the polydisperse
model on the level of the PMSA. However, with respect to
the size-symmetric case (system I), the shift is now less pro-
nounced in temperature and in density. Compared to the
MSA, the shift is similar as in the size-symmetric case (cf.
Fig. 1) and again a strong asymmetry is introduced, in par-
ticular, in the shadow curve; within PMSA the cloud curve is
of similar symmetry as in the MSA, its maximum is shifted
to larger p and smaller 7 values.

We have then studied fractionation effects, starting again
with the daughter distribution functions fik)(a) for selected
points. In most cases we have observed qualitatively similar
results as in the MSA and we thus display only one example,
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FIG. 9. Comparison of the phase diagram (in terms of cloud and shadow
curves and the critical binodals) for the size-asymmetric polydisperse CHS
mixture (system II) calculated via MSA (Ref. 5) (dashed lines) and PMSA
(solid lines).
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FIG. 10. Parent [f(io)(a')] (thick full lines) and daughter [fik)((r),k:l,Z]
distribution functions (full lines) for the size-asymmetric polydisperse CHS
mixture (system II) calculated for points C; and C,, located on the cloud and
shadow curves in the phase diagram (see Table I and Fig. 9). Broken lines:
f{tk);bel“(o') as defined in the text. k= 1—gas phase, k=2—fluid phase.

where we have found particular differences. It is a pair of
state points (labeled C;, k=1,2) which is located on the
cloud and shadow curves (as indicated in Fig. 8 and specified
in Table I). The corresponding fik)(o) are displayed in Fig.
10. For both positively and negatively charged particles we
observe a clear separation of the daughter distribution func-
tions of the coexisting phases, i.e., there is no overlap be-
tween the respective sets of curves, which offers a nice pos-
sibility to separate the larger particles in the liquid and the
smaller particles in the gas phase.

To obtain a more quantitative information about fraction-
ation effects we discuss the results for (o’)ik), D(k),, and
<Zi)<ik). As a consequence of the local charge neutrality re-
quirement (11) in the present model the situation is different
than in the MSA case: we reconsider Eq. (20) and multiply
both sides with o7 integration leads to

(Y =()YK, k=0,1,2, (78)

K being defined in (77). Therefore (cr)frk)/ (0)&0)
=<0‘>(_k)/ (a’)(_o), k=1,2. In a similar manner one can easily
derive

(0)_=(0),K*> (79)

and thus D(_k)zDErk), k=1,2. This means that only results for
the positively or negatively charged particles need to be dis-
cussed.

The curves for (o-)ik)/ <0’>_('_0) (cf. Fig. 11) show similar
shapes as in the MSA.” Here a brief comment on the corre-
sponding MSA curves (shown in Figs. 11 and 12 of Ref. 5) is
in order: from these data one might conclude that MSA leads
to considerable differences between the + and the — case.
However, if these figures are redrawn with the same scaling
of the diameters as in the present contribution, then the +
and the — curves are considerably closer and they sometimes
even coincide; only for the high-density branch of the
shadow curve considerable differences are only encountered.
While the local charge neutrality of the present concept im-
poses the scaling behavior (78), this behavior is automati-
cally satisfied within a remarkably high accuracy for MSA.
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FIG. 11. <0’>_(:\)/<0'>_(:)):(<0’>(_k>/<0'>(_0)), k=1,2, as defined in the text (cf. Sec. R s _
IV A) for the size-asymmetric polydisperse CHS mixture (system II) along : p:'r

three binodals for the parent phase densities p“©'=0.04 (broken line), p"©
=p.,=0.102 (full line), and p*®=0.2 (dashed-dotted line), and along the
shadow curve (thick full and thick broken lines). The dotted vertical line
through (0')(?/ a'i(]):l separates the gas (left) from the fluid (right) region.
Note that this vertical line represents the (o'}ik)/(zr)f) values for states on the
cloud curve.

We therefore conclude that the local charge neutrality condi-
tion does not really represent a considerable restriction. Fi-
nally, we observe that D(tk) behaves in a similar manner as in
the size-symmetric model (cf. Fig. 12) and therefore shows
distinct difference with respect to the MSA. Finally, the av-
erage charges, (zi)(rk), k=1,2, show—as a consequence of
relation (14)—a similar behavior as (o-i)ik), and therefore do
not display them here.

D. Outlook

The deplorable lack of computer simulation reference
data for the location of the critical point in polydisperse mix-
tures of CHS has motivated us to an admittedly speculative
study how T, and p, might vary with size asymmetry [at
fixed distribution width D©©=0.01.]

In Fig. 13 we show the values for the critical tempera-
ture and the critical density as obtained in the MSA and in
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FIG. 12. D¥(=DY), k=1,2, as defined in the text (cf. Sec. IV A) for the
size asymmetric polydisperse CHS mixture (system II) along three binodals
for the parent phase densities p"©=0.04 (broken line), p"®=p. =0.102 (full
line), and p“(©=0.2 (dashed-dotted line), and along the shadow curve (thick
full and thick broken lines). Binodals: k=1-—gas phase, k=2—fluid phase;
shadow curve: broken line—gas phase, full line—fluid phase.
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FIG. 13. Critical temperature T/, (top) and critical density p,, (bottom) vs
=(c)?/ <o-)i0) at fixed polydispersity D®=0.01 for the polydisperse CHS
fluid, as predicted using MSA (Ref. 5) (dashed lines) PMSA (solid lines)
data and the extrapolation scheme presented in Sec. IV D: open squares; the
dotted lines connecting symbols are shown to guide the eye.

the PMSA as functions of the size-asymmetry parameter 7
=<cr>(_0)/ (U)Ero), keeping D fixed to 0.01. Similar as in the
case of the bidisperse CHS mixture (see Fig. 1), the PMSA
data are shifted with respect to the MSA results to lower
values in T, and to higher values in p.: as we have learned
from the bidisperse case (see Sec. IV C 1), this represents a
shift just in a direction where discrepancies with (exact)
computer simulation data become smaller. In an effort to
estimate the location of the exact data, we assume that the
MSA, the PMSA, and the exact values for the critical param-
eters satisfy, regardless of the degree of polydispersity, the
following relations:

Ed ES

Tcr;MSA — L crPMSA
* = C

* *
PcrMSA ~ Per;PMSA
1 c;, S cr;PMS — C2~ (80)
Tcr;PMSA - Tcr;MC

1

pcr;PMSA - pzr;MC

Inserting our results and the results of MC simulation
studies'*" for bidisperse size-asymmetric primitive electro-
Iyte model in the above relations, the two constants C; and
C, in relation (80) can be fixed. Extending now this extrapo-
lation expression to all 7 values, we obtain the dotted curve
shown in Fig. 13.

In a similar manner we study the influence of polydis-
persity on the location of the critical point; we restrict our-
selves here to the size-symmetric case. Using an extrapola-
tion procedure as the one outlined above, we obtain T, and
per as functions of D© (Fig. 14). Based on this extrapolation
we expect T, to increase with increasing polydispersity
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FIG. 14. Critical temperature 7%, (top) and critical density p., (bottom) vs
D© for a polydisperse mixture of CHS (as described in Sec. IV D): MSA
(Ref. 5) (dashed lines), PMSA (solid lines); MC (Refs. 44-46) data (filled
triangles) for the RPM [i.e., D©=0] are given for reference. For the dash-
dotted line see text.

which is plausible, since the increasing number of larger par-
ticles will induce a stronger interaction among the particles.

V. CONCLUSIONS

In an effort to study the phase behavior of a polydisperse
mixture of CHS on a more quantitative level than this is
possible within the framework of the MSA, we have gener-
alized the concept of MSNC to the polydisperse case. The
resulting polydisperse mixture of neutral, polar dimers is
then treated within the PMSA. Generalizing the expressions
for the thermodynamic properties from the case of a mixture
with a finite number of components to the polydisperse case
we realize that they can be expressed by a finite number of
generalized moments of the distribution function that char-
acterizes the polydispersity of the system. Thus, instead of
solving the infinitely many coexistence equations we can de-
termine the densities and the distribution functions of the
coexisting daughter phases by solving a set of coupled, non-
linear equations. We have chosen two polydisperse mixtures
of CHS, one being size symmetric, the other one being
asymmetric in size with 7=0.7. Due to the lack of simulation
results for the critical parameters of these systems we can
only estimate that PMSA is indeed able to shift—similar to
the bidisperse case—the location of the critical point in such
a direction that the discrepancy becomes smaller.

In an effort to reduce these differences we plan the fol-
lowing modifications of the concept: reflecting observations

J. Chem. Phys. 123, 124501 (2005)

of simulations'* that up to 40%-50% neutral dimers and up
to 20%—-30% neutral tetramers are counted in the RPM close
to phase boundaries, we also intend to include these higher-
order clusters in the concept. This will certainly lead to a
considerably increased complexity of the formalism and, as a
consequence, to numerical problems; however, we expect
that inclusion of these effects will shift the PMSA curves
even closer to “exact” simulation data.
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