
Predicting equilibrium structures in freezing processes
Dieter Gottwald
Center for Computational Materials Science and Institut für Theoretische Physik, Technische Universität
Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria and Institut für Theoretische Physik II,
Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany

Gerhard Kahl
Center for Computational Materials Science and Institut für Theoretische Physik, Technische Universität
Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

Christos N. Likos
Institut für Theorestische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225
Düsseldorf, Germany

sReceived 15 February 2005; accepted 11 March 2005; published online 23 May 2005d

We propose genetic algorithms as a new tool that is able topredict all possible solid candidate
structures into which a simple fluid can freeze. In contrast to the conventional approach where the
equilibrium structures of the solid phases are chosen from a preselected set of candidates, genetic
algorithms perform a parameter-free, unbiased, and unrestricted search in the entire search space,
i.e., among all possible candidate structures. We apply the algorithm to recalculate the
zero-temperature phase diagrams of neutral star polymers and of charged microgels over a large
density range. The power of genetic algorithms and their advantages over conventional approaches
is demonstrated by the fact that new and unexpected equilibrium structures for the solid phases are
discovered. Improvements of the algorithm that lead to a more rapid convergence are proposed and
the role of various parameters of the method is critically assessed. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1901585g

I. INTRODUCTION

The freezing behavior of simple fluids can be predicted,
as a consequence of considerable progress achieved during
past years, very accurately. The conventional approach to
this problem proceeds along the following lines: first—
relying on experience, intuition, or plausible arguments—a
set of possible candidate structures for the solid phase is
preselected. Then, using microscopic liquid state theories,
the free energy of the fluid phase is calculated.1,2 For the
solid, a wide spectrum of methods, at varying levels of so-
phistication, are available for the calculation of the free en-
ergy of the above-mentioned preselected crystal structures.
These methods include, with increasing numerical and con-
ceptual effort, simple lattice sums,3 cell models,4–7 harmonic
solid theories of various degrees of sophistication,8,9 and
modern density functional approaches.10–14 In this way, one
can calculate the free energies of the competing phases and
compare the thermodynamic stability of the respective solid
structures. For a given temperature and density, the free-
energy calculations along with the double tangent construc-
tion provide then information on the stability of the crystal-
line phases and the location of possible phase boundaries
between them. This approach can also be applied, albeit with
considerably increased numerical effort, to more complex
systems that are, for instance, characterized by an additional
internal degree of freedom.15 The inherent weak point of this
approach is the preselection process, which bears the risk to
simply “forget” possible equilibrium structures. In this con-
tribution, we introduce the tool of genetic algorithmssGAd to

address this problem. We will demonstrate that GAs are able
to determine the structure of the solid phases via a
parameter-free, unbiased, and unrestricted search strategy in
the entire search space.

GAs were originally developed by Holland and
co-workers16 and have later been extended to different fields
ssuch as business, economics, or engineering; see, e.g., Ref.
17d, where they have meanwhile become a very attractive
tool due to several reasons: no particular requirements are
imposed on the function to be optimized and restrictions on
the possible solutions can be included very easily. Further,
GAs have turned out to be numerically robust, powerful, and
well suited for problems in large and complex search spaces;
they directly aim at global maxima and not only at the near-
est local one; finally, their numerical implementation is
rather simple. Although GAs are meanwhile widely used in
different fields, they have not yet become particularly popu-
lar in physics or chemistry. To the best of our knowledge,
they have been used up to now only for optimizing cluster
geometriesssee Ref. 18, and references thereind.

In several of the optimization problems arising in our
field of research, the theory of condensed matter, we have
realized that GAs are a very useful, efficient, and reliable
tool. In this contribution we want to demonstrate its poten-
tial, power, and merits in an application to a standard prob-
lem of condensed matter: the freezing transition. We point
out the particular advantages of the GA over conventional
approaches and want to encourage with this contribution
condensed matter theoreticians to a more widespread use of
this attractive tool.
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The conventional approach to the freezing process as
outlined above has—despite its merits—the drawback that it
is not able topredict in an unbiased way those crystalline
structures into which the fluid phase freezes: the preselection
of possible candidate structures in the beginning already
rules out all other structures, which are either too complex to
be taken into account or which simply have not been consid-
ered at all; they will never show up in the phase diagram
even though they might represent possible stable crystalline
structures. The conventional access to freezing therefore al-
ways carries the risk that results are not predicted in a con-
structive way but might rather be biased bya priori assump-
tions. It is therefore highly desirable to search for an
alternative tool, that is, able topredict those stable structures
into which a simplesor even complexd fluid can freeze in an
unbiased and unrestricted search—possibly in the entire
search space—without excluding any structure from the very
beginning. The absence of any “culturally induced preju-
dices” regarding the candidate crystal structuresswhich oft
leads to a prejudice in favor of the cubic latticesd is of tan-
tamount importance when dealing with effective interactions
that typically arise between macromolecular aggregates, usu-
ally encountered in soft condensed matter physics. Indeed,
the ultrasoft character of these potentials19 often leads to the
emergence of “exotic” crystalline structures3 with very un-
usual point-group symmetry properties.20,21 Our investiga-
tions provide convincing evidence to the fact that GAs are
indeed able to fulfill these expectations, as will be demon-
strated in what follows.

As mentioned above, GAs are optimization strategies;
they can be viewed as an implementation of Darwin’s pro-
cess of evolution, using thus features of evolutionary pro-
cesses as key elements to find the optimal solution for a
problem. The basic quantity in a GA is anindividual which
represents a candidate solution; individuals are evaluated via
a problem-specific fitness function in the sense that a better
sor fitterd individual has a higher fitness value. A large num-
ber of individuals forms ageneration. After selecting—
according to their fitness values—parents in one generation,
individuals of the subsequent generation are formed via
simple operationsssuch as recombination and mutationd. It-
erating through several generations, retaining in each genera-
tion the individual with the highest fitness value, and taking
in the end the one with the absolutely highest fitness value
leads to the final solution.

In this contribution we apply the GA to the freezing
problem and consider two standard systems of soft matter:
neutral star polymers and charged microgels. We have fo-
cused on systems interacting by soft potentials rather than by
hard ones, since the equilibrium structures of the latter are by
now well studied and bear no further secrets. On the other
hand, investigations of the phase behavior of soft systems
have brought along, in recent times, many surprises and un-
expected results. Therefore, they represent an ideal testing
ground for the GA. Indeed, we are able to demonstrate the
power of this algorithm by comparing our results for neutral
star polymers with those presented in Ref. 3, which were
obtained via a conventional approach: even though ponder-
ous considerations in combination with very sophisticated

concepts20,21 were applied in Ref. 3 to predict the solid
phases, our GA predicted with its parameter-free, unre-
stricted, and unbiased search algorithm new and unexpected
equilibrium structures for the system.

In our application of the GA to the freezing problem, we
identify a possible lattice structure at a given temperature
and density as an individual; this representation is realized
via a suitable translation rule, which serves to express geo-
metrical properties in a binary language. Selecting parents of
one generation via their respective fitness valuesswhich are
related to the energy to this latticed lead via the usual cycle
sselection-recombination-mutation-evaluationd to individuals
of the subsequent generation. The individual with the abso-
lutely highest fitness value, i.e., the structure with the lowest
free energy, is considered—after a final application of a hill-
climbing search—as the solution to the problem and thus as
the equilibrium structure for a given temperature and density.
Our results for the phase diagrams of soft materials are then
complemented by a critical discussion on refinements of the
concept and of the numerical parameters, and of the imple-
mentation of the code. We confirm that GAs can indeed be
implemented very easily, they are robust and reliable, and
converge fast.

We conclude this introduction by a brief summary of a
recent study on the mating behavior ofParus caeruleus22

which demonstrates the nature’s basic strategies to guarantee
survival of a species are realized in GAs: ornithologists
found out that extra-pair mating of the females leads to a
fitter offspring: while social monogamy reduces the repro-
ductive successsexpressed, e.g., by a higher susceptibility to
diseasesd, mating between genetically dissimilar species
leads to an offspring with a higher genetic quality. This is
reflected in a higher reproductive success and increased sur-
vival chances, the offspring is genetically diversified, and has
a higher fitness. We shall establish a relation between these
findings and our results later in this contribution.

The rest of the paper is organized as follows: In Sec. II
we introduce the basic ideas of a GA and describe how they
are translated to address the freezing problem. In Sec. III we
present results obtained for two typical soft matter systems.
In Sec. IV we propose refinements of the GA technique and
discuss the role of its numerical parameters. Finally, in
Sec. V we summarize and draw our conclusions.

II. THEORY

A. Genetic algorithms in general

We start with a brief summary of the basic ideas of a GA
and will show in the subsequent section how this scheme
translates to our specific problem. In a GA an individual
sgenotyped represents a point in search space and thus one
candidate solutionsphenotyped. The genotype is built up by a
fixed number of genes. In our case, one individual will rep-
resent the primitive vectors that form a simple lattice in a
coded form; eventually it will also include positions of fur-
ther particles in a nonsimple lattice, possibly a vector for an
additional internal degree of freedom, or further parameters
that characterize the geometrical structure under consider-
ation. The genes in an individual can take values out of a
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suitably chosen alphabet. A large butfixed number of indi-
viduals forms a generation. Further, a positive-definite fitness
function has to be introduced, which evaluates the individu-
als in the sense that a higher fitness value represents a better
solution. Constraints on the individuals which stem from
constraints on the phenotypes can easily be taken into ac-
count: either via a penalty function which reduces the fitness
of an individual or by a suitable encodingsparametrizationd
of the same. The GA proceeds as follows: the initialization of
the first generation is realized at random, then pairs of indi-
viduals are selected according to their fitness value. These
pairs represent parents that generate individuals of the sub-
sequent generation; several procedures for this matingsre-
combinationd processes have been proposed in the
literature.17 In addition, mutations are performed on these
individuals with a probabilitypmutate, a procedure necessary
to avoid persistent inbreeding and allowing at the same time
for reintroduction of new or lost genetic material. Within one
generation we retain the individual with the highest fitness
value in a list. With the individuals of the second generation
we proceed as in the preceding generation. This cycle
sselection-recombination-mutation-evaluationd is carried
through several times; during these iterations the average fit-
ness increases up to a certain threshold. In the end we recon-
sider the list of the individuals with the highest fitness value
and choose the fittest among them as the final solution.

B. Genetic algorithms in freezing problems

These general ideas of GAs are now adapted to describe
freezing transitions: we start by representing a lattice—i.e., a
possible candidate for a solid equilibrium structure—as an
individual. We start with a simple latticesi.e., with one basis
particle per lattice sited and extend the formalism to more
complex, nonsimple latticesswith more than one basis par-
ticled later. Let hxij=hx1,x2,x3j be the primitive vectors of
the Bravais lattice: then we use the following convention for
the parametrization of thehxij:

x1 = as1,0,0d,

x2 = asx cosF,x sinF,0d,

x3 = asxy cosC cosq,xy cosC cosq,xy sinqd. s1d

In these equations, the parametera is uniquely determined
by the density of the system; the remaining five parameters
sx, y, F, C, andqd, that characterize the Bravais lattice are
limited by the following constraints:

0 , x ø 1, 0, y ø 1, s2d

0 , F ø p/2, 0, C ø p, 0 , q ø p/2. s3d

Note that representations1d is not unique, since a given lat-
tice can be represented by a different, but equivalent set of
basis vectorshx̄ij; we will reconsider this aspect later.

In nonsimple lattices withb particles per basis, addi-
tional vectorsyi, i =1,… ,b, have to be introduced, which fix
the positions of theb additional particles; in our calculations
b was limited due to practical reasons to 8ssee also discus-
sion in Sec. IVd. Without loss of generality we puty1=0 and

thus reduce the number of parameters to be optimized. For
theyi, i =2,… ,b, we have used the following representation:
yi =o j=1,2,3cijx j, with 0øcij ,1. Again, note that different
sets ofcij can characterize different but equivalent represen-
tations of a nonsimple lattice; also these ambiguities have
been excluded by suitable algorithms—see below. Other pa-
rameters that characterize the model can be added if required
ssee, for instance, the examples discussed in Sec. III Bd.

We now “translate” a Bravais lattice, represented by
hx,y,F ,C ,qj, into an individualI where we have chosen
the following convention:

hx1,x2,x3j ; hx,y,F,C,qj → bxbybFbCbq = Ihxij
, s4d

the bx,… ,bq represent five strings of genes of different
lengths: in our approach we have found 12 genes to the suf-
ficient to build upbx andby and 6 genes forbF, bC, andbq;
see also discussion below.

For the genes we have chosen the binary alphabet, there-
fore thebi are sequences of 0’s and 1’s. With this encoding
thebi’s can be interpreted as binary representations of a deci-

mal number, which we denote byb̃i. We further introduce
bi,max to denote the maximum value of thebi sbeing a se-

quence of 6 or 12 1’sd, and its decimal representation,b̃i,max

sbeing in our case either 4095 or 63d.
The value ofx is obtained via

x =
b̃x + 1

b̃x,max+ 1
. s5d

This relation betweenx andbx has the attractive feature that
it guarantees fulfillment of restrictions2d on x and that un-
physical si.e., negatived values of x are automatically ex-
cluded. Due to the limited length ofbx, results forx have a
relative accuracy of 2−12,2310−4, a value that we have
found to be sufficient in our studies. Fory we use exactly the
same translation rule. For the anglesF, C, andq we use a
slightly different parametrization, namely,

F =
p

2

b̃F + 1

b̃F,max+ 1
s6d

and similar relations forC andq; for obvious reasons these
expressions take into account restrictionss3d on the angles;
the relative accuracy for these parameters is thus 2310−6

,0.016.
In nonsimple lattices, the additional coordinates of the

basis particlessi.e., the quantitiescijd have to be taken into
account: for eachcij we use a translation rule similar to Eq.
s5d; thus an individualIhxi,b jj

, representing now a nonsimple
lattice, has the length off18+12s3b−1dg genes. If we restrict
ourselves to up to eight basis particles, the maximum length
of an individual can reach in our case a value of 294; this
means that the possible search space is extremely high di-
mensional. As will be discussed belowsSec. IVd, the surface
that describes the fitness of the individuals in search space
becomes extremely ruggedsi.e., characterized by many local
minimad in high-dimensional search spaces, causing thus
considerable problems in the search of the absolute mini-
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mum. Therefore, the limitation to eight basis particles repre-
sents rather a numerical than a practical limit.

We now come back to the uniqueness of the representa-
tion of a lattice by an individualhxi ,b jj↔Ihxi,b jj

. While in
other problems in condensed matter physics it might be ir-
relevant if a lattice is represented by a set of primitive vec-
tors hxij or by an equivalent sethx̄ij, this is certainly not the
case in an application of a GA. We explain this in a simple
example: suppose that the face-centered-cubicsfccd structure
is the equilibrium structure for a given state point. If this fcc
lattice were not represented by a uniquely fixed set of primi-
tive vectorshxij then the GA might propose twosor perhaps
even mored sets of equivalent primitive vectors that represent
the very same fcc lattice as optimal solutions and the algo-
rithm would never converge. Therefore we had to introduce a
convention that fixes the set of thehxij and, possibly, of the
set of thehbij in a unique way.

Again we start to present this convention with a Bravais
lattice. First, we choose the primitive vectorshxij in such a
way that the surface of the unit cell,S, be minimal. The
latter is given by the equation:

S = ux1 3 x2u + ux1 3 x3u + ux2 3 x3u. s7d

This can be achieved by a simple iterative algorithm where
the vectorshxij are replaced by an equivalent set ofhxi8j until
S reaches its minimum. Starting with the three vectors
hx1,x2,x3j one checks the surface of the cell spanned by
the 12 combinations,

hx1 ± x2,x2,x3j, hx1 ± x3,x2,x3j,

hx1,x2 ± x1,x3j, hx1,x2 ± x3,x3j,

hx1,x2,x3 ± x1j, hx1,x2,x3 ± x2j,

and takes the combination with the lowest value as new
primitive vectors if the surface is smaller than the one of the
starting vectors. If the surface increases by combining the
vectors the algorithm is ended.

The set of basis vectorshbij is also not unique, as the
sb−1d setshbi −b jj, j =2,… ,b describe the same lattice and
the basis vectors can be ordered in any way without chang-
ing the lattice. We chose the following convention to fix the
basis vectors: all basis vectors are represented by their coor-
dinates with respect to the primitive vectors. The coordinates
can be shifted by integer values until they lie in the interval
f0,1d. The basis vectorb j is chosen so that the sum of the
coordinates of all basis vectors is a minimum. The vectors
are sorted first by theirx1 coordinate, then by thex2 coordi-
nate, and then by thex3 coordinate.

Second, taking advantage of our freedom with respect to
rotation and/or inversion of thehxij, the vectors are rotated
until the longest of them points in the positivex axis. The
other two vectors are then rotated around thex axis so that
the second longest vector lies in thesx,yd plane. If necessary,
the shortest vector and/or thez axis are inverted so that thex
and thez component of the shortest vector is positive. One
then arrives at the representations1d. Finally, based on the
results for thehxij, the lattices were identified by analyzing
their symmetry properties.

At this occasion we point out that the GA is self-
consistent with respect to the representation of the structure.
We explain this for the example of a fcc structure: if for a
given state point the fluid freezes into a fcc structure it is
irrelevant if this lattice is represented by a simple lattice or
by a non-simple lattice: the GA proposes via the different
routes within high accuracy thesamefcc structure.

We have implemented our GA as follows: we start with
the generation of index 0,Gf0g=hIf0gj, where the individuals
hIf0gj are chosen at random. Typical values for the number of
individuals, comprising a generationNI used in our GAs are
1000ssee discussion in Sec. IVd. As already outlined in Sec.
II A, a positive fitness value is assigned to each individualI
via the fitness functionfsId: a higher fitness value character-
izes a better solution. For our problem, we specify the fitness
function as follows: since the crystal structure with the low-
est free energyF is considered to be the stable one, the
fitness function in our approaches has to be energy related. In
our investigations the standard choice forfsId reads

fsId = expH1 −
FsId

FsIfccdJ , s8d

whereFsIfccd is the free energy of a fcc structure. The ap-
pearance of the ratioFsId /FsIfccd in the exponent guarantees
that the latter always remains of order unity, since both quan-
tities involved are extensive. Alternative functional forms
will be discussed in Sec. IV.

Subsequently, we create in an iterative process from the
individuals of generationGfig the individuals of the subse-
quent generationGfi+1g: we start by selecting two individuals,
Ifig8 andIfig9 , according to their fitness values as parents. The
probability that an individualIfig is chosen as parent is given
by

psIfigd =
fsIfigd

o
J[Gfig

fsJd
. s9d

The two chosen parents create, in the second step, individu-
als Ifi+1g8 andIfi+1g9 of the subsequent generationGfi+1g, via a
one-point crossover, as visualized in Fig. 1. To this end, we
cut the parents’ gene sequences at a randomly chosen point
and cross combine them. A uniform random integer number
r [ f1,l −1g determines the crossover point, wherel denotes
the length of the individual. We point out that this recombi-
nation step is completely “blind” to the cell geometrysin
terms of the parametersx, y, F, C, andqd and the location
of the spossibled basis atoms. It thereforedoes notcorre-
spond to geometric moves of particles which thus clearly

FIG. 1. Schematic representation of the one-point crossover that generates
from two parent individuals,Ifig8 and Ifig9 , of generationGfig stopd and two
new individuals, Ifi+1g8 and Ifi+1g9 , of the subsequent generationGfi+1g

sbottomd.
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distinguishes our GA approach from applications of evolu-
tionary algorithms to describe cluster formation.18

Further, we perform mutations with a probabilitypmutate

swhich has typically a value of 0.01d on the individuals
Ifi+1g: this means that we flip in an arbitrarily chosen indi-
vidual in an arbitrarily position the value of a gene from zero
to one or vice versa. Mutations avoid inbreeding and repre-
sent at the same time reintroduction of new or lost genetic
information; they will be discussed thoroughly in Sec. IV.
Finally, we evaluate the genes that have been constructed in
this way via the fitness function,fsIfi+1gd, and denote the one
with the highest fitness value in generationGfi+1g by Ifi+1g

* .

We then iterate this cycle, producing thereby a typical num-
ber of NG,100 generations. TheIfig

* are recorded and the

final solution of the GA,I* , is considered to be the indi-
vidual among theIfig

* with the highest fitness value. The final

solution of the problem is found by a final hill-climbing op-
timization, starting fromI* ; we need this final step in order
to compensate for the limited accuracy of the parameters
hx,y,F ,C ,qj which is a consequence of the limited number
of genes in the respective binary representations, Eqs.s5d
and s6d.

III. EXAMPLES

A. Star polymers

Star polymers are typical representatives of soft matter
systems; they are complex aggregates, built up by a well-
defined numberf of flexible polymer chains that are grafted
to a central particle. In Ref. 23 an effective potentialFsrd
has been proposed, which was obtained by averaging over
the many degrees of freedom of the fluctuating chain mono-
mers via suitable coarse graining methods; it reads as

bFsrd=
5

18
f3/2H− lnsr/sd + s1 +Îf/2d−1, r ø s

ss/rds1 +Îf/2d−1expf− Îfsr − sd/2sg, s , r .
s10d

Two parameters characterize the system: the functionalityf
and the corona diameters, which measures the spatial ex-
tension of the monomer density around the central particle.
b=skBTd−1, kB is Boltzmann’s constant,T is the temperature,
andr is the number density. Because of the purely entropic
nature of the model that leads to above potential,23 Fsrd
scales with temperature which thus becomes an irrelevant
parameter.

In work subsequent to Ref. 23, the phase behavior of star
polymer particles was determined, using the effective poten-
tial of Eq. s10d as a starting point.3,24 We focus in the fol-
lowing on the solid phases only. To be consistent with Ref. 3,
we restrict ourselves, as we calculate the energies of each of
the competing solid structures, to lattice sumsL: this means
that the particles are considered to be fixed at the lattice
positions and that no thermal fluctuations are taken into ac-
count. Phase diagrams based on lattice sums are commonly
referred to in literature as the “zero-temperature phase dia-
gram” since particles are considered to be immobile in their
lattice positions; even though temperature is an irrelevant
parameter in the present model we shall use this term in this
contribution as well. Note that atT=0, F=U=L.

In the conventional approach to determine crystal equi-
librium structures one starts by a preselection of possiblesor
plausibled candidate structures. Since the phase diagram of a
soft system has been in the late 1990s a yet undiscovered
field, the authors of Refs. 3 and 24 had to rely in their search
for possible structures on their intuition or on plausible argu-
ments and particular care was in order. Apart from the obvi-
ous candidate, fcc and body centered cubicsbccd, also body-
centered orthogonalsbcod and diamond lattices were found
to be stable structures. This represents already a remarkable

and completely unexpected result since neither bcoshaving
an anisotropic rectangular celld nor diamond were expected
as equilibrium structures for a system with radially symmet-
ric pair potential: there was rather a widespread belief that
such structures can only be induced by nonspherical poten-
tials. Additional and very careful considerations, which, in
turn, were based on a rather general study on the driving
mechanism of the open structures in soft systems,20,21 led to
the conclusion that the A15 structure might also represent a
possible candidate structure for star polymers; it was indeed
encountered for rather high densities. In Fig. 2 we display
the conventional unit cell of this rather rare structure. The
complete zero-temperature phase diagram, being depicted in
Fig. 6 of Ref. 3, is based on these five candidates and has
quite an exotic topology: it is characterized by a host of
many equilibrium structures, it has an unexpectedly complex
topology, including both first- and second-order phase tran-
sitions as well as critical end points.

FIG. 2. The conventional unit cell of the A15 structure. Note that this cell
can be described by a simple cubic lattice plus eight basis particles. The
length of the conventional cell edge is denoted bya.

204503-5 Predicting equilibrium structures in freezing processes J. Chem. Phys. 122, 204503 ~2005!

Downloaded 14 Jun 2005 to 128.131.48.66. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



We have reconsidered the very same problem, using now
our GA to find the equilibrium structures of the solid phases.
We shall demonstrate that—in contrast to the conventional
approach outlined above—the GA is able to predict the solid
equilibrium structures in a parameter-free, unbiased, and un-
restricted search. Since we use lattice sumsL to calculate the
zero-temperature phase diagram, the free energyF in expres-
sion s8d for the fitness functionfsId is replaced byL, which
is given by

L =
1

2 o
RiÞ0

FsRid, s11d

wherehRij are the vectors denoting the particle positions at
the given lattice. At each statescharacterized byr and fd the
GA predicts, the respective solid equilibrium structure.

In Fig. 3 we display the lattice sumL as a function ofr
for star polymers with functionalityf =64; we compare the
structures obtained in the conventional approach3 with the
equilibrium structures predicted via the GA. Already at inter-
mediate densities a trigonal lattice, which had not been con-

sidered in the conventional approach, is obviously more
stable than bco. However, as can be seen from the inset of
Fig. 3, the difference in the free energies is of the order of
,0.5%: this convincingly demonstrates the difficulties in the
conventional approach and the attractive features of the GA.
As we increase the density, both approaches predict a dia-
mond structure. Forrs3*3, additional and this time remark-
able discrepancies between the two approaches are observed:
the GA predicts hexagonal and hcp as equilibrium structures,
i.e., two crystals that had not been considered in the conven-
tional approach at all; for these densities bco and A15 were
predicted in Ref. 3. We summarize that forrs3ø4 the GA
predicts three equilibrium structures that had not been con-
sidered in the previous approach, i.e., trigonal, hcp, and hex-
agonal, all of them giving lower free energies than the ones
originally proposed in Ref. 3.

For 4.1&rs3&4.4, the GA predicts—in agreement with
the results presented in Ref. 3—the A15 structuressee Fig.
2d, a rather exotic lattice that has been encountered experi-
mentally in soft matter.25 We point out that the fact that the
GA is able to predict the A15 as a possible equilibrium struc-
ture in this complex and highly dimensional search space
snote that an individual is now built up by 252 genes and the
search space comprises 2252,731075 candidate structuresd
convincingly demonstrates the power of this approach. We
close with the remark that the GA has, as expected, conver-
gence problems close to the phase boundaries, where the two
competing structures have values of the free energy which
are very close.

B. Charged microgels

In the next example we consider charged microgels: in
such a system we find charged, spherical macroions and
point counterions dispersed in an electrolyte solvent; the lat-
ter is treated as a continuum and is characterized by a dielec-
tric constante. Denton26 has proposed a simple model for
this system and has derived, by averaging over the degrees of
freedom of the constituent particles, explicit expressions for
the effective potentialFsrd acting between the centers of the
microgel particles and for the thermodynamic properties.
Written in a compact form,Fsrd is given by

bFsrd

=
Z2lB

s 5H
24

k2s2 −
72

k3s3Fe−ksS1 +
2

ka
D2

+ S1 −
4

k2s2DGJ , r = 0

H 24

k2s2 +
r

s
S 144

k4s4 −
36

k2s2D +
r3

s3

12

k2s2 −
72

k4s4

s

r
Fe−ksS1 +

2

ks
D2

sinhskrd + S1 −
4

k2s2Ds1 − e−krdGJ, 0 , r ø s

144

k4s4

s

r
Hcoshsks/2d −

2

ks
sinhska/2dJ2

e−kr , s , r .

s12d

FIG. 3. Dimensionless lattice sum per particlebL /N for star polymers with
functionality f =64 as a function of the densityrs3, evaluated for the equi-
librium structures found in the conventional approachsRef. 3d sbroken lined
and for the equilibrium structures predicted by the GAspresent contribution;
full lined. The inset shows the difference inbL /N between the hexagonal
and the trigonal structure for 1.3&rs3&2.2.
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In Eq. s12d above,Z is the effective macroion valence,lB is
the Bjerrum length, andk=Î4pncz

2lB is the inverse Debye
screening length, wherenc stands for the counterion number
density andz for their valency;s is the diameter of the
macroions.

The phase diagram of charged microgels has already
been presented in Refs. 27 and 28. Here we complement
these data with a few remarks on technical modifications of
the GA for this particular system. In contrast to the star poly-
mers, we have calculated the finite-temperature phase dia-
gram via the Einstein model8,29 sfor reasons given belowd;
this approximate concept provides an estimate for the upper
bound of the free energy of a system. Its basic relation is the
Gibbs–Bogoliubov inequality that relates the free energy of
the system,F, and the free energy of a suitably chosen ref-
erence system,F0, via the inequality

F ø F0 + kV − V0l0, s13d

V andV0 are, respectively, the potential energies of the sys-
tem and of the reference system.k¯l0 represents an en-
semble average taken in the reference system for which we
chose an Einstein solid: here the potential energy is given by

V0 = o
hRij

a

2
sr i − Rid2. s14d

a is a spring constant and thehRij represent the positions of
the lattice. ForF0 one can derive the following result:

b
F0

N
=

3

2
lnSb

as2

2p
D + 3 lnSL

s
D , s15d

whereL is the de Broglie wave length. Finally,V is given by

V = o
hRi,R jj

FsRi − R jd. s16d

For charged microgels the evaluation ofkV−V0l0 can be car-
ried outanalytically; closed expressions are presented in Ref.
30. This nice feature was not accessible for the potential of
star polymers due to the logarithmic term in Eq.s10d. We
calculated both the zero-temperature and the finite-
temperature phase diagrams for the solid phases obtained by
the GA. Both results are depicted in Fig. 4.

Two remarks are of order: first, we note that if we use
lattice sums instead of the Einstein model to calculate the
free energy, then we obtain a qualitatively similar phase dia-
gram with exactly the same candidate structures; the precise
locations of the phase boundaries are of course different in
the two approaches. We further point out that the Einstein
model becomes equivalent to a density-functional theory
sDFTd approach, where a mean-field format for the excess
free-energy functionalFexf%g and a Gaussian-shaped one
particle density%sr d is used:31

Fexf%g =
1

2
E dr 1E dr 2%sr 1d%sr 2dFsur 1 − r 2ud, s17d

%sr d = S ã

p
D3/2

o
hRij

expf− ãsr − Rid2g, s18d

where thehRij are the lattice positions. Once can show31 that
then the expression for the free energysas a function ofãd in
the DFT approach is exactly the right-hand side of inequality
Eq. s13d in the Einstein model. Minimization of the free
energy with respect toã in the DFT approach leads to the
equilibrium one particle density; minimization of the right-
hand side of Eq.s13d with respect toa provides an estimate
for the smallest upper bound for the free energy of the sys-
tem. Thus the two approaches are equivalent.

This minimization of the right-hand side of Eq.s13d with
respect to the set of parameters of the reference systemsin
our case, the parameterad in the Einstein model can be in-
tegrated in the GA formalism. To this end we have extended
the representation of an individual—see Eq.s4d for the
simple lattice—by an additional sequence of genes,ba,
which is a string of ten genes, of them assuming again values
0 or 1. Introducing a reasonable lower limit fora, i.e., 30
øa, prevents that the delocalization of the particles becomes
unphysically large. Again, this restriction ona can be suit-

ably included in the formalism: we relatea andb̃a, the value

FIG. 4. sad Zero-temperature solid phase diagram for ionic microgels.sbd
Finite temperature solid phase diagram for ionic microgels. In both diagrams
the microgel diameter is fixed ats=100 nm and the phase boundaries are
the intersection points of the free-energy curves, i.e., the small density gaps
between coexisting phases are not shown.
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of the decimal representation ofba, via a=30+b̃ana; we
have chosenna=5, and thusa[ f30,5145g. Although for-
mally a can assume only values on a grid of integer number
with spacing ofna, this does not represent a severe restric-
tion: the final value fora proposed by the GA is refined in
the subsequent hill-climbing search.

The zero-temperature phase diagram obtained in this
way is depicted in Fig. 6 of Ref. 28 and contains forrs3

,6 the following equilibrium structuressin the sequence of
increasing densityd: fcc, bcc, hexagonal, bcosonly for a
number of elementary chargesZ*450d, trigonal, and, again,
hexagonal. In our earlier investigations of the charged
microgels,27,28 we have calculated the complete phase dia-
gram forT.0 sincluding both solidand liquid phasesd. For
this task the GA has fulfilled an extremely useful task, since
the structures obtained for the zero-temperature phase dia-
gram via the GA have now been used as possible candidates
for the the solid structures of the complete phase diagram.

IV. REFINEMENTS OF THE GA AND THE ROLE
OF NUMERICAL PARAMETERS

In this section we propose refinements of the basic ver-
sion of the GA as presented and applied in previous sections;
we also discuss the influence of the numerical parameters on
the convergence and efficiency of the algorithm. The ex-
amples we use for demonstration are typical and representa-
tive cases that we have encountered; since in our GA version
the individuals of the first generation are created via random
numbers and the subsequent crossover-, mutation-, and
selection-processes are also controlled by random numbers,
the curves we present in the following are reproducible only
on a qualitative but not on a quantitative level. For conve-
nience we introduce the notationLfig

* =LsIfig
* d, i.e., the lattice

sum of the fittestsbestd individual of generation with indexi.

A. Refinements of the GA technique

In the preceding sections we have introduced the basic
version of the GA. Due to several reasons, refinements of
this technique are of order. First, they aim at a higher con-
vergence speed: the evaluation of the fitness functionsor,
equivalently, the free energy/the lattice sumd represents the
numerical bottleneck of the algorithm. Therefore, if we could
obtain the final solution of the GA with a considerably
smaller number of individuals and/or less generations, using
refined concepts to calculate the free energy, more complex
applications might come within reach. Another important is-
sue is the dimensionality of search space: we have realized
that from a certain number of basis vectors onwardsstypi-
cally eight vectors or mored the surface in search space be-
comes very rugged: it is then characterized by a large num-
ber of local minima and consequently the search of the
global minimum becomes very difficult. Therefore, a reason-
ably reduction of the dimensionality of the search spacese.g,
via a suitable biasd might be very helpful. Both aspects will
be addressed in the following.

Convergence can indeed be sped up by introducing a
generation-dependent fitness function, for example, via the
following functional form:

f̃ figsId = expH1 −F FsId
FsIfccdGesid.J , s19d

where the function in the exponent,esid, now depends on the
generation indexi; in the present contribution we have used
esid=1+i /10. Thus the choice of the fittest individual in a
generation becomes more selective asi increases. To demon-
strate the influence of the functionesid on the convergence of
the GA we have chosen a state point, where a microgel fluid
freezes into a hexagonal structuresZ=500,s=100 nm,rs3

=5d. A total number of four calculations were carried out
with the GA: A lattice with one basis vectorsb=1d both with
the fitness functions8d sno refinementd and the generation-
dependent fitness functions19d srefinementd was optimized
and two analogous calculations for a lattice with eight basis
particlessb=8d. In Fig. 5 we display the lattice sum of the
fittest individual of generationi, Lfig

* , as a function of the
generation indexi.

The fact that the GA leads after 1000 generations to
results that differ by,10% might seem puzzling at first
sight, since all routes should converge to the same structure;
in fact, the final hill-climbing searchdoeslead to the same
final resultsbLfinal /N,137.13d. In the case where eight ba-
sis particles and the refined fitness function were used, the
primitive vectors form a face-centered monoclinic lattice.
From the four different curves presented in Fig. 5 we learn
the following: after 1000 generations the fitness function

f̃sId provides for bothb values lower results forLfig
* than the

function fsId and proposes thus a better starting point for the
hill-climbing search. While these differences are rather neg-
ligible for the low-dimensional search spacesb=1d, they are
considerable forb=8; this is a very encouraging message
since the improved fitness function brings along a significant
improvement, in particular, for the case where—due to the
large number of basis particles—the search space is ex-
tremely high dimensional and where the search for a mini-
mum is very delicate—as mentioned above. In addition, this
nice advantage is provided for free since the evaluation of

FIG. 5. Dimensionless lattice sum per particle of the fittest individual,
bLfig

* /N, of the generation with indexi as a function ofi, obtained via the
fitness functionfsId, Eq. s8d sno refinementd, and the modified fitness func-

tion f̃sId, Eq. s19d srefinementd, for a microgel system that freezes into a
hexagonal structuresZ=500,s=100 nm,rs3=5d; monoatomic Bravais lat-
tice sb=1d vs structure with eight basis particlessb=8d.
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the fitness value via Eq.s19d is not more time consuming
than via Eq.s8d; thus no additional computational effort has
to be made to obtain this improved convergence.

The other modification of the algorithm we propose is a
lattice-biased version of the GA. It is designed to bring along
improvements for those cases when the underlying Bravais
lattice of the equilibrium structure is obvious, while the num-
ber and the positions of the basis particles is yet unknown.
Then one can fix the vectorshxij during the search procedure
and vary only the number and the parameters that fix the
positions of the basis. This leads to a reduction in the number
of the parameters to be optimized and thus to a decrease in
the computational effort. We demonstrate the consequences
of the lattice-biased version of the GA in Fig. 6 with the
following example: we have chosen a state point where the
star polymer fluid freezes into the A15 structure; the conven-
tional unit cell has cubic symmetry and a basis of eight par-
ticles scf. Fig. 2 and the discussion in Sec. III Ad. In Fig. 6
we display the dimensionless lattice sum per particle of the
fittest individual of generation with indexi, bLfig

* /N, calcu-
lated via the conventional GA and via the lattice-biased ver-
sion of the algorithm; in the latter case, a simple cubicsscd
lattice was assumed with fixed lattice vectors and only the
positions for the eight particles of the basis were optimized.
Even though the conventional algorithm converges faster, the
lattice-biased version leads to a lower result for the lattice
sum and thus to a better starting value for the subsequent
hill-climbing search.

B. The role of the numerical algorithm parameters

In this section we turn our attention to the role played by
the numerical parameters of the algorithm and present some
details regarding the choice of their precise values. In the
course of the present investigation but also in dealing with
other applications, such as clustering transitions and quasi-
two-dimensional systems we have come to the conclusion
that the optimal choice of the numerical parameterssNI, NG,
length of binary representations, etc.d are strongly problem
specific and therefore no general guidelines can be provided.
For the present contribution,NI=1000 andNG=100 have

turned out to be largely sufficient, for most of the state points
studied convergence was already obtained after a consider-
ably smaller number of generations.

We therefore strongly recommend to test thoroughly
these numerical parameters in practical applications. Further,
computational effort can be economized by using and/or
adapting the refined concepts introduced in the preceding
section. In particular, modifications of the fitness function
following the lines of expressions19d have turned out to be
extremely useful in high dimensional search spaces. We
point out once more that thesproblem-specificd evaluation of
the fitness function represents the bottleneck of the GA: most
of the computational effort can be economized here.

Let us now consider the mutation step in the GA and
demonstrate in the following that it represents a very impor-
tant part of the GA. In Fig. 7sad we displaybLfig

* /N as a
function of the generation indexi: once it has been calcu-
lated with a mutation probabilitypmutate=0.01, then we have
suppressed the mutation completely in the GAsi.e., pmutate

=0d. The curves clearly demonstrate that mutation is an in-
dispensable ingredient to improve the quality of the fitness of
the individual as the generation develops: forpmutate=0, the
GA leads after a few generationssi >6d to an individual with
a relatively small value for the lattice sum and from there
onwards the quality of the individuals does not improve any

FIG. 6. Dimensionless lattice sum per particle of the fittest individual,
bLfig

* /N, of generation with indexi as a function ofi: conventional GA
sbroken lined lattice sscd biased versionsfull lined.

FIG. 7. sad The quantityDf fig= fmax;fig− fmin;fig as a function of the generation
index i, where fmax;fig sfmin;figd is the highestslowestd fitness value encoun-
tered in generation with indexi. Full line, spmutate=0.01d; dotted line,
spmutate=0d. sbd The dimensionless lattice sum per particle of the fittest in-
dividual, bLfig

* /N, of generation with indexi as a function ofi; lines
as in sad.
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more. On the other hand, forpmutate=0.01 there is a steady
improvement in the lattice sum of the fittest individual asi
increases over nearly 70 generations. The influence of muta-
tion on the genetic diversity can be seen in Fig. 7sbd: here we
display Df fig, i.e., the difference in the highestsfmax;figd and
the lowestsfmin;figd fitness values encountered in the genera-
tion with index i. While for pmutate=0, Df fig soon reaches
values close to zerosDf fig&0.1 for i *30d, the genetic diver-
sity in the individuals over the generations forpmutate.0 is
clearly visible by the relatively largeDf fig values and their
strong variation as a function ofi. We point out that these
results nicely reproduce those findings that were reported on
the mating behavior ofParus caeruleus22 mentioned in the
introduction: for those birds the extra pair matingswhich
corresponds in our case to the mutation stepd leads to a ge-
netically diversified offspring, which has higher survival
chances and an increased fitness.

V. SUMMARY AND CONCLUDING REMARKS

We have introduced GAs as a new tool to a standard
problem in condensed matter theory, which—despite consid-
erable efforts in past years—is still a nontrivial one: the pre-
diction of equilibrium structures in freezing transitions.
Since such transitions have already been thoroughly studied
over past decades in systems with harshly repulsive systems,
we have rather focused on soft systems, where the potentials
diverge weakly or even remain finite at the origin. The
choice for this class of systems is also justified by the fact
that here the stability of the candidate crystal structures has
been much less investigated and is still poorly understood; in
addition, first investigations in this highly actual and chal-
lenging field have indicated that the phase diagrams of soft
systems offer a surprisingly rich wealth of new and unex-
pected equilibrium structures. We were thus convinced that
these systems represent a very stringent and reliable test of
the GA. In our implementation the individuals are binary
representations of the primitive vectors of the lattice and the
positions of possible, additional basis atoms. Based on an
energy related fitness function, the typical GA cycle
“selection-recombination-mutation-evaluation” has led after
a reasonably small number of iterations to the final result of
the GA. The limited accuracy in the binary representation of
the lattice is compensated by a concluding refinement step,
realized in a hill-climbing search. In our approach, the cal-
culation of the fitness function, representing the numerical
bottleneck of the algorithm, has been restricted to simple
concepts to calculate the free energy, such as lattice sums,
Einstein models, or simple density functionals. We have ap-
plied the GA in this contribution to star polymers and
charged microgels, two typical soft matter systems. In these
examples we have demonstrated the attractive features of this
algorithm, i.e., its power, efficiency, flexibility, and simplic-
ity. We have compared the performance of GAs to conven-
tional algorithms, which, instead, have to rely in their pre-
diction of possible candidate structures on the researcher’s
experience, intuition, or on plausible arguments; the GA, on
the other hand, predicts these structures in a parameter-free,
unbiased, and unrestricted search in the entire search space

and is thus clearly superior to the conventional approach.
The calculation of the fitness function, representing the
bottleneck of the algorithm, has been restricted to simple
concepts to calculate the free energy, such as lattice sums,
Einstein models, or simple density-functional formats.

Further, we have presented conceptual and numerical re-
finements of GAs which aim at an increased convergence
speed and on numerical stability, thus offering access to
more complex approaches and to more refined schemes to
calculate the free energy. We have shown that modifications
of the fitness function and a lattice-biased version of the GA
can lead to a considerable increase in the convergence speed;
we have also discussed the numerical parameters and, in par-
ticular, the importance of the mutation step.

With the appropriate modifications, genetic algorithms
can also be applied to a related but much more complex
problem, namely, to the determination of ordered structures
in confined systems, lying between two and three dimen-
sions. Preliminary results in this direction reinforce our claim
regarding the enormous predictive power of these tools.
Since up to now the power and the attractive features of GAs
have not been sufficiently recognized neither in physics nor
in chemistryswhile they have proven to be very attractive in
many other fieldsd, we hope to motivate with the present
contribution condensed matter theoreticians to a more wide-
spread use of this attractive, useful, and easy-to-handle tool.
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