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Predicting equilibrium structures in freezing processes
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We propose genetic algorithms as a new tool that is ablereédict all possible solid candidate
structures into which a simple fluid can freeze. In contrast to the conventional approach where the
equilibrium structures of the solid phases are chosen from a preselected set of candidates, genetic
algorithms perform a parameter-free, unbiased, and unrestricted search in the entire search space,
i.e., among all possible candidate structures. We apply the algorithm to recalculate the
zero-temperature phase diagrams of neutral star polymers and of charged microgels over a large
density range. The power of genetic algorithms and their advantages over conventional approaches
is demonstrated by the fact that new and unexpected equilibrium structures for the solid phases are
discovered. Improvements of the algorithm that lead to a more rapid convergence are proposed and
the role of various parameters of the method is critically assessétl0® American Institute of
Physics[DOI: 10.1063/1.1901585

I. INTRODUCTION address this problem. We will demonstrate that GAs are able
to determine the structure of the solid phases via a
The freezing behavior of simple fluids can be predicted parameter-free, unbiased, and unrestricted search strategy in
as a consequence of considerable progress achieved duriti entire search space.
past years, very accurately. The conventional approach to GAs were originally developed by Holland and
this problem proceeds along the following lines: first— co-worker$® and have later been extended to different fields
relying on experience, intuition, or plausible arguments—a(such as business, economics, or engineering; see, e.g., Ref.
set of possible candidate structures for the solid phase i87), where they have meanwhile become a very attractive
preselected. Then, using microscopic liquid state theoriespol due to several reasons: no particular requirements are
the free energy of the fluid phase is calculatédror the imposed on the function to be optimized and restrictions on
solid, a wide spectrum of methods, at varying levels of sothe possible solutions can be included very easily. Further,
phistication, are available for the calculation of the free en-GAs have turned out to be numerically robust, powerful, and
ergy of the above-mentioned preselected crystal structuregvell suited for problems in large and complex search spaces;
These methods include, with increasing numerical and conthey directly aim at global maxima and not only at the near-
ceptual effort, simple lattice sunis;ell models*™ harmonic  est local one: finally, their numerical implementation is
solid theories of various degrees of sophisticafidrand  rather simple. Although GAs are meanwhile widely used in
modern density functional approacH@E%“ln this way, one different fields, they have not yet become particularly popu-
can calculate the free energies of the competing phases ai@ in physics or chemistry. To the best of our knowledge,
compare the thermodynamic stability of the respective solidhey have been used up to now only for optimizing cluster
structures. For a given temperature and density, the freegeometriegsee Ref. 18, and references thejein
energy calculations along with the double tangent construc- In several of the optimization problems arising in our
tion provide then information on the stability of the crystal- field of research, the theory of condensed matter, we have
line phases and the location of possible phase boundarigsalized that GAs are a very useful, efficient, and reliable
between them. This approach can also be applied, albeit wittool. In this contribution we want to demonstrate its poten-
considerably increased numerical effort, to more complexial, power, and merits in an application to a standard prob-
systems that are, for instance, characterized by an additioneEdm of condensed matter: the freezing transition. We point
internal degree of freedom.The inherent weak point of this out the particular advantages of the GA over conventional
approach is the preselection process, which bears the risk spproaches and want to encourage with this contribution
simply “forget” possible equilibrium structures. In this con- condensed matter theoreticians to a more widespread use of
tribution, we introduce the tool of genetic algorithii@A) to  this attractive tool.
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The conventional approach to the freezing process asoncept&®?! were applied in Ref. 3 to predict the solid
outlined above has—despite its merits—the drawback that iphases, our GA predicted with its parameter-free, unre-
is not able topredictin an unbiased way those crystalline stricted, and unbiased search algorithm new and unexpected
structures into which the fluid phase freezes: the preselectioequilibrium structures for the system.
of possible candidate structures in the beginning already In our application of the GA to the freezing problem, we
rules out all other structures, which are either too complex tadentify a possible lattice structure at a given temperature
be taken into account or which simply have not been considand density as an individual; this representation is realized
ered at all; they will never show up in the phase diagranvia a suitable translation rule, which serves to express geo-
even though they might represent possible stable crystallineetrical properties in a binary language. Selecting parents of
structures. The conventional access to freezing therefore abne generation via their respective fitness valivdsich are
ways carries the risk that results are not predicted in a conelated to the energy to this lattickead via the usual cycle
structive way but might rather be biased d&yriori assump-  (selection-recombination-mutation-evaluadida individuals
tions. It is therefore highly desirable to search for anof the subsequent generation. The individual with the abso-
alternative tool, that is, able faredictthose stable structures lutely highest fitness value, i.e., the structure with the lowest
into which a simpleg(or even complexfluid can freeze in an  free energy, is considered—after a final application of a hill-
unbiased and unrestricted search—possibly in the entirglimbing search—as the solution to the problem and thus as
search space—without excluding any structure from the veryhe equilibrium structure for a given temperature and density.
beginning. The absence of any “culturally induced preju-Our results for the phase diagrams of soft materials are then
dices” regarding the candidate crystal structufghich oft ~ complemented by a critical discussion on refinements of the
leads to a prejudice in favor of the cubic lattités of tan- ~ concept and of the numerical parameters, and of the imple-
tamount importance when dealing with effective interactiongnentation of the code. We confirm that GAs can indeed be
that typically arise between macromolecular aggregates, usimplemented very easily, they are robust and reliable, and
ally encountered in soft condensed matter physics. Indeegonverge fast.
the ultrasoft character of these potentidsften leads to the We conclude this introduction by a brief summary of a
emergence of “exotic” crystalline structufesith very un-  fecent study on the mating behavior Barus caeruleu$
usual point-group symmetry properti@?! Our investiga- Which demonstrates the nature’s basic strategies to guarantee
tions provide convincing evidence to the fact that GAs aresurvival of a species are realized in GAs: ornithologists
indeed able to fulfill these expectations, as will be demonfound out that extra-pair mating of the females leads to a
strated in what follows. fitter offspring: while social monogamy reduces the repro-
As mentioned above, GAs are optimization strategiesQUCtiVe succesgexpressed, e.g., by a higher susceptibility to
they can be viewed as an implementation of Darwin’s Ioro_disease)s mating between genetically dissimilar species
cess of evolution, using thus features of evolutionary proléads to an offspring with a higher genetic quality. This is
cesses as key elements to find the optimal solution for A€flected in a higher reproductive success and increased sur-
problem. The basic quantity in a GA is amdividual which vwgl chan_ces, the offspring is ger_wetlcally dlyer5|f|ed, and has
represents a candidate solution; individuals are evaluated v Nigher fitness. We shall establish a relation between these
a problem-specific fitness function in the sense that a bettd1dings and our results later in this contribution.
(or fitten individual has a higher fitness value. A large num- ' he rest of the paper is organized as follows: In Sec. I
ber of individuals forms ageneration After selecting— We introduce the basic ideas of a GA and describe how they

according to their fitness values—parents in one generatiof® translated to address the freezing problem. In Sec. lll we
individuals of the subsequent generation are formed vi@resent results obtained for two typical soft matter systems.

simple operationgsuch as recombination and mutatiott- /" S€c. IV we propose refinements of the GA technique and
erating through several generations, retaining in each generdiScuss the role of its numerical parameters. Finally, in
tion the individual with the highest fitness value, and taking>€¢: V We summarize and draw our conclusions.
in the end the one with the absolutely highest fitness value
leads to the final solution. Il. THEORY

In this contribution we apply the GA to the freezin : . :
problem and consider two stSrF:dyard systems of soft mat?e'rb:" Genetic algorithms in general
neutral star polymers and charged microgels. We have fo- We start with a brief summary of the basic ideas of a GA
cused on systems interacting by soft potentials rather than bgnd will show in the subsequent section how this scheme
hard ones, since the equilibrium structures of the latter are biranslates to our specific problem. In a GA an individual
now well studied and bear no further secrets. On the othefgenotype represents a point in search space and thus one
hand, investigations of the phase behavior of soft systemsandidate solutiofphenotyp& The genotype is built up by a
have brought along, in recent times, many surprises and urfixed number of genes. In our case, one individual will rep-
expected results. Therefore, they represent an ideal testingsent the primitive vectors that form a simple lattice in a
ground for the GA. Indeed, we are able to demonstrate theoded form; eventually it will also include positions of fur-
power of this algorithm by comparing our results for neutralther particles in a nonsimple lattice, possibly a vector for an
star polymers with those presented in Ref. 3, which weredditional internal degree of freedom, or further parameters
obtained via a conventional approach: even though pondethat characterize the geometrical structure under consider-
ous considerations in combination with very sophisticatecation. The genes in an individual can take values out of a
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suitably chosen alphabet. A large Hiked number of indi- thus reduce the number of parameters to be optimized. For
viduals forms a generation. Further, a positive-definite fitnesthey;, i=2,...,b, we have used the following representation:
function has to be introduced, which evaluates the individuy;=X-; , £;jX;, with 0<c; <1. Again, note that different

als in the sense that a higher fitness value represents a betsats ofc;; can characterize different but equivalent represen-
solution. Constraints on the individuals which stem fromtations of a nonsimple lattice; also these ambiguities have
constraints on the phenotypes can easily be taken into ateen excluded by suitable algorithms—see below. Other pa-
count: either via a penalty function which reduces the fithessameters that characterize the model can be added if required
of an individual or by a suitable encodirfgarametrization  (see, for instance, the examples discussed in Sec).lll B

of the same. The GA proceeds as follows: the initialization of  We now “translate” a Bravais lattice, represented by
the first generation is realized at random, then pairs of indi{x,y,®,¥,9}, into an individualZ where we have chosen
viduals are selected according to their fitness value. Thesthe following convention:

pairs represent parents that generate individuals of the sub-

sequent generation; several procedures for this mdtieg X1, %0, X} = (XY, @, W, 9} — bbybgbyby =Ty, (4)
combination processes have been proposed in the i . .
literature'” In addition, mutations are performed on thesethe bx"".’bﬁ represent five strings of genes of different
individuals with a probabilityp,,,ate @ pProcedure necessary '?’?gthS: n our approach we have found 12 genes to th.e suf-
to avoid persistent inbreeding and allowing at the same timdcient to build upb, andb, and 6 genes foby, by, andby;

for reintroduction of new or lost genetic material. Within one seeFaIS(?[hdlscussmn bEIOW' h the bi Ibhabet. th
generation we retain the individual with the highest fitness, or the genes we have chosen the binary aiphabet, there-

value in a list. With the individuals of the second generationfore theb; are sequences of 0's and 1's. With this encoding

we proceed as in the preceding generation. This cycléhe b,'s can be interpreted as binaly representations of a deci-
(selection-recombination-mutation-evaluagionis carried ~Mal number, which we denote dy. We further introduce
through several times; during these iterations the average fifk,max 0 denote the maximum value of thg (being a se-
ness increases up to a certain threshold. In the end we recoguence of 6 or 12 1)s and its decimal representatian),max
sider the list of the individuals with the highest fitness value(being in our case either 4095 or)63

and choose the fittest among them as the final solution. The value ofx is obtained via
B. Genetic algorithms in freezing problems = BX+ 1 )
These general ideas of GAs are now adapted to describe Bx,max+ 1

freezing transitions: we start by representing a lattice—i.e., a_ . ) )
possible candidate for a solid equilibrium structure—as anl NS relation between andb, has the attractive feature that
individual. We start with a simple lattiog.e., with one basis It guarantees fulfiliment of restrictiof2) on x and that un-
particle per lattice siteand extend the formalism to more Physical (i.e., negative values ofx are automatically ex-
complex, nonsimple latticevith more than one basis par- cluded. Due to the I|m|£ed Iength4 df,, results forx have a
ticle) later. Let{x;}={x,x,,xs} be the primitive vectors of relative accuracy of 2?2~2x10" a value that we have

the Bravais lattice: then we use the following convention forfound to be sufficient in our studies. Fpme use exactly the
the parametrization of thix,}: same translation rule. For the anglés ¥, and J we use a

slightly different parametrization, namely,
x;=a(1,0,0, _
_ z bq) + 1

= (6)
2 b(I),max+ 1

X, = a(x cosd,x sin®,0),

X3 = a(xy cosW cosd,xy cosW cosd,xysin9). @) and similar relations fo and; for obvious reasons these

In these equations, the paramegeis uniquely determined expressions take into account restrictid8s on the angles;

by the density of the system; the remaining five parameterthe relative accuracy for these parameters is thusl@®

(x, y, @, ¥, and9), that characterize the Bravais lattice are ~0.016.

limited by the following constraints: In nonsimple lattices, the additional coordinates of the

basis particledi.e., the quantities;;) have to be taken into

account: for eacle;; we use a translation rule similar to Eq.

(5); thus an individualZ, ,, representing now a nonsimple

lattice, has the length ¢fl8+123b-1)] genes. If we restrict

Note that representatiofi) is not unique, since a given lat- ourselves to up to eight basis particles, the maximum length

tice can be represented by a different, but equivalent set a#f an individual can reach in our case a value of 294, this

basis vectorgx;}; we will reconsider this aspect later. means that the possible search space is extremely high di-
In nonsimple lattices wittb particles per basis, addi- mensional. As will be discussed beld®ec. IV), the surface

tional vectorsy;, i=1,...,b, have to be introduced, which fix that describes the fitness of the individuals in search space

the positions of thé additional particles; in our calculations becomes extremely ruggéde., characterized by many local

b was limited due to practical reasons tds®&e also discus- minima) in high-dimensional search spaces, causing thus

sion in Sec. IV. Without loss of generality we pyt;=0 and  considerable problems in the search of the absolute mini-

0<x=1, 0O<ys=1, (2

O0<db=sqa/2, 0<¥=s7m 0O0<I<a/2. (3)
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mum. Therefore, the limitation to eight basis particles repre- [o[1]0]1]1]0]0][1] [1]1]o
sents rather a numerical than a practical limit.

We now come back to the uniqueness of the representa-
tion of a lattice by an individua{xi,bj}HI{xiybj}. While in
other problems in condensed matter physics it might be irgiG. 1. Schematic representation of the one-point crossover that generates
relevant if a lattice is represented by a set of primitive vec-rom two parent individualsZ};; and Z};), of generationGy; (top) and two
tors{x;} or by an equivalent s€k;}, this is certainly not the new individuals, Z;;,;; and Zf,,;, of the subsequent generatiog;.y
case in an application of a GA. We explain this in a simple(Pottom.
example: suppose that the face-centered-c(fb@ structure
is the equilibrium structure for a given state point. If this fcc At this occasion we point out that the GA is self-
lattice were not represented by a uniquely fixed set of primiconsistent with respect to the representation of the structure.
tive vectors{x;} then the GA might propose tw@r perhaps We explain this for the example of a fcc structure: if for a
even morgsets of equivalent primitive vectors that representgiven state point the fluid freezes into a fcc structure it is
the very same fcc lattice as optimal solutions and the algoirrelevant if this lattice is represented by a simple lattice or
rithm would never converge. Therefore we had to introduce &y a non-simple lattice: the GA proposes via the different
convention that fixes the set of the} and, possibly, of the routes within high accuracy theamefcc structure.
set of the{b;} in a unique way. We have implemented our GA as follows: we start with

Again we start to present this convention with a Bravaisthe generation of index @;={Z[o}}, where the individuals
lattice. First, we choose the primitive vectdps} in such a  {7,,} are chosen at random. Typical values for the number of
way that the surface of the unit celt, be minimal. The jndividuals, comprising a generatidt, used in our GAs are
latter is given by the equation: 1000 (see discussion in Sec. JVAs already outlined in Sec.

S, = [Xg X Xo| + [Xq X Xa| + [Xo X Xg]. 7) II_A, a pgsitive fitne_ss value is_ assigned to each individial

via the fitness functiorf(Z): a higher fitness value character-
This can be achieved by a simple iterative algorithm whergzes a better solution. For our problem, we specify the fithess
the vectorgx;} are replaced by an equivalent seff} until  function as follows: since the crystal structure with the low-
% reaches its minimum. Starting with the three vectorsest free energy is considered to be the stable one, the
{X1,%2,X3} one checks the surface of the cell spanned byfitness function in our approaches has to be energy related. In

oo [1]0]1 |

o[1]oJofo] 14‘1"6,\51/} nh l:o!71\|»‘1“\’>0 [0]1]

the 12 combinations, our investigations the standard choice f¢f) reads
{Xl + X2:X21X3}! {Xl * X31X2|X3}1 F(I)
f(I) =ex 1 - F(z_fcc) ) (8)
{X1,Xo £ X1,X3}, {X1,X2 £ X3,X3},

where F(Z°) is the free energy of a fcc structure. The ap-

(X1, X2:Xa £ Xa}, X1, X2, X3 % X}, pearance of the ratiB(Z)/F(Z™) in the exponent guarantees
and takes the combination with the lowest value as nevhatthe latter always remains of order unity, since both quan-

primitive vectors if the surface is smaller than the one of thdities involved are extensive. Alternative functional forms

starting vectors. If the surface increases by combining th&ill be discussed in Sec. IV. o
vectors the algorithm is ended. Subsequently, we create in an iterative process from the

The set of basis vectorb;} is also not unique, as the individuals of generatioryy;; the individuals of the subse-
(b-1) sets{bj—b;}, j=2,...,b describe the same lattice and quent generatiog;.;: we start by selecting two individuals,
the basis vectors can be ordered in any way without changf(;; andZj;;, according to their fitness values as parents. The
ing the lattice. We chose the following convention to fix the probability that an individualy; is chosen as parent is given
basis vectors: all basis vectors are represented by their codsy
dinates with respect to the primitive vectors. The coordinates

can be shifted by integer values until they lie in the interval o(Z) = f(Zriy) )

[0,2). The basis vectob; is chosen so that the sum of the Li] S ()

coordinates of all basis vectors is a minimum. The vectors JEGH

are sorted first by theix; coordinate, then by the, coordi-

nate, and then by the; coordinate. The two chosen parents create, in the second step, individu-

Second, taking advantage of our freedom with respect t@ls Zj;.1) andZj;, ) of the subsequent generatigh., via a
rotation and/or inversion of thé;}, the vectors are rotated one-point crossover, as visualized in Fig. 1. To this end, we
until the longest of them points in the positixeaxis. The cut the parents’ gene sequences at a randomly chosen point
other two vectors are then rotated around thaxis so that and cross combine them. A uniform random integer number
the second longest vector lies in they) plane. If necessary, r&[1,1-1] determines the crossover point, whérdenotes
the shortest vector and/or taexis are inverted so that the  the length of the individual. We point out that this recombi-
and thez component of the shortest vector is positive. Onenation step is completely “blind” to the cell geomettip
then arrives at the representati@®. Finally, based on the terms of the parametess y, ®, ¥, and+)) and the location
results for the(x;}, the lattices were identified by analyzing of the (possible basis atoms. It therefordoes notcorre-
their symmetry properties. spond to geometric moves of particles which thus clearly

Downloaded 14 Jun 2005 to 128.131.48.66. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



204503-5 Predicting equilibrium structures in freezing processes J. Chem. Phys. 122, 204503 (2005)

distinguishes our GA approach from applications of evolu-solution of the problem is found by a final hill-climbing op-

tionary algorithms to describe cluster formatiSh. timization, starting froniZ"; we need this final step in order
Further, we perform mutations with a probabilpy, e t0 COmpensate for the limited accuracy of the parameters

(which has typically a value of 0.0lon the individuals {x,y,®, ¥, ¥} which is a consequence of the limited number

Tji+1y this means that we flip in an arbitrarily chosen indi- of genes in the respective binary representations, Efjs.

vidual in an arbitrarily position the value of a gene from zero@nd (6).

to one or vice versa. Mutations avoid inbreeding and repre-

sent at the same time reintroduction of new or lost genetié“‘ EXAMPLES

information; they will be discussed thoroughly in Sec. IV. A. Star polymers

Finally, we evaluate the genes that have been constructed in

this way via the fitness functiorf(Z;,,;), and denote the one s . .

) , , , ) ystems; they are complex aggregates, built up by a well-
with the highest fitness value in generatigp.y by Zi,1  defined numbef of flexible polymer chains that are grafted
We then iterate this cycle, producing thereby a typical num+tg a central particle. In Ref. 23 an effective potenti(r)
ber of Ng~100 generations. Thg;, are recorded and the has been proposed, which was obtained by averaging over
final solution of the GA,Z", is considered to be the indi- the many degrees of freedom of the fluctuating chain mono-
vidual among th&fi] with the highest fithess value. The final mers via suitable coarse graining methods; it reads as

Star polymers are typical representatives of soft matter

_ 5 qap] ~In(o)+ (4 V1272, r<o

[e1o\-1 [ (10)
18 (alr)(1 +NT12) " exd = Vi(r — 0)/20], o<r.

BO(r)

Two parameters characterize the system: the functionfility and completely unexpected result since neither (@wving
and the corona diameter, which measures the spatial ex- an anisotropic rectangular cethor diamond were expected
tension of the monomer density around the central particleas equilibrium structures for a system with radially symmet-
B=(ksT)™%, kg is Boltzmann’s constant; is the temperature, ric pair potential: there was rather a widespread belief that
andp is the number density. Because of the purely entropiguch structures can only be induced by nonspherical poten-
nature of the model that leads to above poteﬁﬁ@(r) tials. Additional and very careful considerations, which, in
scales with temperature which thus becomes an irrelevariti/n, were based on a rather general study on the driving
parameter. mechanism of the open structures in soft syst%orﬁéled to

In work subsequent to Ref. 23, the phase behavior of stalhe conclusion that the A15 structure might also represent a
polymer particles was determined, using the effective potenP0ssible candidate structure for star polymers; it was indeed
tial of Eq. (10) as a starting poirt?* We focus in the fol- encountereo_l for rather high de_nsities. In Fig. 2 we display
lowing on the solid phases only. To be consistent with Ref. gthe conventional unit cell of this ra‘Fher rare structure. The_
we restrict ourselves, as we calculate the energies of each §pMPlete zero-temperature phase diagram, being depicted in
the competing solid structures, to lattice sumshis means F19- 6 of Ref. 3, is based on these five candidates and has
that the particles are considered to be fixed at the latticdUité an exotic topology: it is characterized by a host of
positions and that no thermal fluctuations are taken into ach'@ny €quilibrium structures, it has an unexpectedly complex

count. Phase diagrams based on lattice sums are Commor“?,megyv including both first- and second-order phase tran-

referred to in literature as the “zero-temperature phase dig>tions as well as critical end points.

gram” since particles are considered to be immobile in their /

lattice positions; even though temperature is an irrelevant

parameter in the present model we shall use this term in this |

contribution as well. Note that &=0, F=U=L. I I A S
In the conventional approach to determine crystal equi- }

librium structures one starts by a preselection of posgitrie \

plausiblg candidate structures. Since the phase diagram of a ‘

soft system has been in the late 1990s a yet undiscovered fl _7

field, the authors of Refs. 3 and 24 had to rely in their search ’ o

for possible structures on their intuition or on plausible argu-

ments and particular care was in order. Apart from the obvi-

ous candidate, fcc and bOdy cgntered Cl.(b_EZC), also bOdy- FIG. 2. The conventional unit cell of the A15 structure. Note that this cell

centered orthogonabco) and diamond lattices were found can pe described by a simple cubic lattice plus eight basis particles. The

to be stable structures. This represents already a remarkabéagth of the conventional cell edge is denotedaby
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FIG. 3. Dimensionless lattice sum per partiglie/N for star polymers with
functionality f=64 as a function of the densipt=, evaluated for the equi-
librium structures found in the conventional appro&Rlef. 3 (broken ling
and for the equilibrium structures predicted by the (@#esent contribution;
full line). The inset shows the difference BL/N between the hexagonal
and the trigonal structure for 18pc°<2.2.

our GA to find the equilibrium structures of the solid phases.
We shall demonstrate that—in contrast to the conventiona

approach outlined above—the GA is able to predict the soli
equilibrium structures in a parameter-free, unbiased, and u
restricted search. Since we use lattice sling calculate the
zero-temperature phase diagram, the free enErigyexpres-
sion (8) for the fitness functiorf(Z) is replaced by, which

is given by

1
L_

=5 > (R,

R;#0

(11D
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sidered in the conventional approach, is obviously more
stable than bco. However, as can be seen from the inset of
Fig. 3, the difference in the free energies is of the order of
~0.5%: this convincingly demonstrates the difficulties in the
conventional approach and the attractive features of the GA.
As we increase the density, both approaches predict a dia-
mond structure. Foso® = 3, additional and this time remark-
able discrepancies between the two approaches are observed:
the GA predicts hexagonal and hcp as equilibrium structures,
i.e., two crystals that had not been considered in the conven-
tional approach at all; for these densities bco and A15 were
predicted in Ref. 3. We summarize that fes*<4 the GA
predicts three equilibrium structures that had not been con-
sidered in the previous approach, i.e., trigonal, hcp, and hex-
agonal, all of them giving lower free energies than the ones
originally proposed in Ref. 3.

For 4.1< pa®=<4.4, the GA predicts—in agreement with
the results presented in Ref. 3—the A15 structisee Fig.
2), a rather exaotic lattice that has been encountered experi-
mentally in soft mattef> We point out that the fact that the
GAis able to predict the A15 as a possible equilibrium struc-
ture in this complex and highly dimensional search space
V(Vnote that an individual is now built up by 252 genes and the
earch space comprise$2-7x 10’° candidate structurgs
d:onvincingly demonstrates the power of this approach. We
close with the remark that the GA has, as expected, conver-
n- .
gence problems close to the phase boundaries, where the two
competing structures have values of the free energy which
are very close.

B. Charged microgels

In the next example we consider charged microgels: in
such a system we find charged, spherical macroions and

where{R;} are the vectors denoting the particle positions atpoint counterions dispersed in an electrolyte solvent; the lat-

the given lattice. At each stateharacterized by andf) the
GA predicts, the respective solid equilibrium structure.

In Fig. 3 we display the lattice suiln as a function ofp
for star polymers with functionalitf=64; we compare the
structures obtained in the conventional apprdasith the

equilibrium structures predicted via the GA. Already at inter-

ter is treated as a continuum and is characterized by a dielec-
tric constante. Dentorf® has proposed a simple model for
this system and has derived, by averaging over the degrees of
freedom of the constituent particles, explicit expressions for
the effective potential(r) acting between the centers of the
microgel particles and for the thermodynamic properties.

mediate densities a trigonal lattice, which had not been conWritten in a compact forme(r) is given by

BO(r)
K20'2 K3O'3 Ko K20'2 ' -
Z°\g) ) 24 r[ 144 36 P12 720 2\% . 4
= 9 +—( - )+— - —{e"“’<1+—> sin(kr) +|1-—=|(1-e") [, 0<rs=
ag K20'2 g K40'4 K20'2 O'3 K20'2 K40'4 r KO HK ) K20'2 ( ) 7
4 2 2
ﬂg cosl{kol2) — — sinh(kal2) [ €, o<r.
LK g'r KO

(12)
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In Eg. (12 above,Z is the effective macroion valenckg is SO——————— T T
the Bjerrum length, anet=\4mn.z?\g is the inverse Debye I (@ ¥ —~~bco—F
screening length, wheme, stands for the counterion number
density andz for their valency; o is the diameter of the 400~ -
macroions.
The phase diagram of charged microgels has already )
been presented in Refs. 27 and 28. Here we complemen3o0f- fec bec 3 hexagonal trigonal
these data with a few remarks on technical modifications of I
the GA for this particular system. In contrast to the star poly- i
mers, we have calculated the finite-temperature phase dia 209l i -
gram via the Einstein mod&t® (for reasons given below i
this approximate concept provides an estimate for the uppe i
bound of the free energy of a system. Its basic relation is the g, R AR | S TR 1 S
Gibbs—Bogoliubov inequality that relates the free energy of ~ © 1 2 3, 4 5 6
the systemF, and the free energy of a suitably chosen ref- pc
erence systenf,, via the inequality 500 (b)' A B bc'o '
K
F<Fo+(V=Voo, (13 4001- i |
VY andV), are, respectively, the potential energies of the sys- i
tem and of the referer_me systef: -)y represents an en- N300k foc boc hexagonal wigonal  _
semble average taken in the reference system for which we
chose an Einstein solid: here the potential energy is given by
o 200 .
Vo= 2 (=R (14)
{Ri} J
100 L s | A 1 T | 2 |
a is a spring constant and tHR;} represent the positions of 0 I 2 33 4 5 6
the lattice. ForF, one can derive the following result: po

FIG. 4. (a) Zero-temperature solid phase diagram for ionic microgéds.
Fo 3 ad? A Finite temperature solid phase diagram for ionic microgels. In both diagrams
Bﬁ 5 In ,3; +31In ; ’ (15 the microgel diameter is fixed at=100 nm and the phase boundaries are
the intersection points of the free-energy curves, i.e., the small density gaps
between coexisting phases are not shown.

whereA is the de Broglie wave length. Finally,is given by

~\3/2
V=2 OR-R). (16) Q(f)=(%) > exd-alr -R)4, (18)

{Ri.R}} {Ri}

For charged microgels the evaluation(dfVy), can be car- Where the{R;} are the lattice positions. Once can sHibihat
ried outanalytically, closed expressions are presented in Refthen the expression for the free enetgg a function o) in

30. This nice feature was not accessible for the potential of'€ DFT approach is exactly the right-hand side of inequality
star polymers due to the logarithmic term in Hd40). We  EG. (13) in the Einsteiin model. Minimization of the free
calculated both the zero-temperature and the finite€nergy with respect ta in the DFT approach leads to the

temperature phase diagrams for the solid phases obtained B§iuilibrium one particle density; minimization of the right-
the GA. Both results are depicted in Fig. 4. hand side of Eq(13) with respect tox provides an estimate

Two remarks are of order: first, we note that if we usefor the smallest upper bound for the free energy of the sys-
lattice sums instead of the Einstein model to calculate thé®m: Thus the two approaches are equivalent. .
free energy, then we obtain a qualitatively similar phase dia-  This minimization of the right-hand side of EG.3) W'Fh
gram with exactly the same candidate structures; the precig€SPect to the set of parameters of the reference syStem
locations of the phase boundaries are of course different jRUr case, the parameted in the Einstein model can be in-
the two approaches. We further point out that the Einsteif€grated in the GA formalism. To this end we have extended
model becomes equivalent to a density-functional theoryh€ representation of an individual—see Hé) for the
(DFT) approach, where a mean-field format for the exces§imple lattice—by an additional sequence of genis,

free-energy functionalF,Je] and a Gaussian-shaped one Which is a string of ten genes, of them assuming again values
particle densityo(r) is used®: 0 or 1. Introducing a reasonable lower limit fas i.e., 30

=<, prevents that the delocalization of the particles becomes
unphysically large. Again, this restriction ancan be suit-

1 ~
Fede]= Ef drlf droe(rye(r)®(|ry—ry), (17)  ably included in the formalism: we relateandb,, the value
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of the decimal representation &f, via a=30+b,n,; we 180 7 '
have chosem,=5, and thusae €[30,5149. Although for- e I;b:l; no reffgnemem

H ftAaNar Ativbhesr 1L T =8, no refinement A
m.aIIy a can assume pnly values on a grid of integer numper 170} ——— b=1. with refinement
with spacing ofn,, this does not represent a severe restric- ] —— b=8, with refinement

tion: the final value fora proposed by the GA is refined in
the subsequent hill-climbing search.

The zero-temperature phase diagram obtained in this
way is depicted in Fig. 6 of Ref. 28 and contains far®
<6 the following equilibrium structuregn the sequence of
increasing densily fcc, bcc, hexagonal, bcgonly for a
number of elementary charggsz 450), trigonal, and, again,
hexagonal. In our earlier investigations of the charged X | , ) | )
microgels?”?® we have calculated the complete phase dia- 0 200 400 600 800 1000
gram forT>0 (including both solidand liquid phases For
this task the GA has fulfilled an extremely useful task, sinceFIG. 5. Dimensionless lattice sum per particle of the fittest individual,
the structures Obtained for the Zero_temperature phase digL[i]/N' of the generation with indekas a function of, obtained via the
gram via the GA have now been used as possible Candidaté@ess functionf(Z), Eq. (8) (no refinement and the modified fitness func-

: : tion 7(1), Eqg. (19) (refinemeny, for a microgel system that freezes into a
for the the solid structures of the complete phase dlagram.hexagomcll SHrUCUrZ =500 =100 nm po=5): monoatomic Bravais lat-

tice (b=1) vs structure with eight basis particlés=28).

IV. REFINEMENTS OF THE GA AND THE ROLE
OF NUMERICAL PARAMETERS

_ E €(i).
In this section we propose refinements of the basic ver-  f[;1(Z) = exp{l - [ F(;ch)l } (19
sion of the GA as presented and applied in previous sections;
we also discuss the influence of the numerical parameters GRhere the function in the exponertj), now depends on the
the convergence and efficiency of the algorithm. The exgeneration index; in the present contribution we have used
amples we use for demonstration are typical and representa¢j)=1+i/10. Thus the choice of the fittest individual in a
tive cases that we have encountered; since in our GA versiofleneration becomes more selective areases. To demon-
the individuals of the first generation are created via randongtrate the influence of the functia#i) on the convergence of
numbers and the subsequent crossover-, mutation-, anfle GA we have chosen a state point, where a microgel fluid
selection-processes are also controlled by random numbefgeezes into a hexagonal structui@=500,0=100 nm po3
the curves we present in the following are reproducible only=5) A total number of four calculations were carried out
on a qualitative but not on a qu*antitative level. For conveyith the GA: A lattice with one basis vectéb=1) both with
nience we introduce the notatidf};=L(Zj;), i.e., the lattice  the fitness functior(8) (no refinementand the generation-
sum of the fittestbes) individual of generation with indek dependent fitness functiofl9) (refinement was optimized
and two analogous calculations for a lattice with eight basis
A. Refinements of the GA technique particles(b=8). In Fig. 5 we display the lattice sum of the

In the preceding sections we have introduced the basi]:‘!tteSt individual of generation, Lpy, as a function of the

version of the GA. Due to several reasons, refinements gyeneration index. .

this technique are of order. First, they aim at a higher con- The fact t_hat the GA 'eafl's after 1000 g(_aneratlo_ns to
vergence speed: the evaluation of the fitness functwn  eSults that differ by~10% might seem puzzling at first
equivalently, the free energy/the lattice Surapresents the _S|ght, since :_;1II rou_tes _sho_uld converge to the same structure;
numerical bottleneck of the algorithm. Therefore, if we could" fact, the final hill-climbing searckloeslead to the same
obtain the final solution of the GA with a considerably fin@l result(ALena/N~137.13. In the case where eight ba-

smaller number of individuals and/or less generations, using'S Particles and the refined fitness function were used, the

refined concepts to calculate the free energy, more complegimitive vectors form a face-centered monoclinic lattice.

applications might come within reach. Another important is-FTom the four different curves presented in Fig. 5 we learn
sue is the dimensionality of search space: we have realizd® following: after 1000 generations the flt?ess function
that from a certain number of basis vectors onwafsipi-  f(Z) provides for bottb values lower results foj;, than the
cally eight vectors or mojethe surface in search space be-functionf(Z) and proposes thus a better starting point for the
comes very rugged: it is then characterized by a large numhill-climbing search. While these differences are rather neg-
ber of local minima and consequently the search of thdigible for the low-dimensional search spade=1), they are
global minimum becomes very difficult. Therefore, a reason-considerable foib=8; this is a very encouraging message
ably reduction of the dimensionality of the search sp@cg, since the improved fitness function brings along a significant
via a suitable bigsmight be very helpful. Both aspects will improvement, in particular, for the case where—due to the
be addressed in the following. large number of basis particles—the search space is ex-
Convergence can indeed be sped up by introducing &emely high dimensional and where the search for a mini-
generation-dependent fithess function, for example, via thenum is very delicate—as mentioned above. In addition, this
following functional form: nice advantage is provided for free since the evaluation of
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FIG. 6. Dimensionless lattice sum per particle of the fittest individual,
'BLEi]/N’ of generation with index as a function ofi: conventional GA 139.5
(broken ling lattice (so) biased versiorfull line). ’
139
the fitness value via Eq19) is not more time consuming = o
than via Eq.(8); thus no additional computational effort has * = 13s.5)-
to be made to obtain this improved convergence. a L
The other modification of the algorithm we propose is a 138
lattice-biased version of the GA. It is designed to bring along
improvements for those cases when the underlying Bravais 1375
lattice of the equilibrium structure is obvious, while the num- -
ber and the po_sitions of the basi_s particles is yet unknown. B0 20 60 30 100
Then one can fix the vectofs;} during the search procedure i

and. yary only the .numb.er and the paramgter_s that fix thle—IG. 7. (a) The quantityAfji;=fnaxgi— fmingiy @S @ function of the generation
positions of the basis. This leads to a reduction in the numbefgey ;. wheref ) () i the highestlowes? fitness value encoun-
of the parameters to be optimized and thus to a decrease igred in generation with index. Full line, (pmuae=0.0D; dotted line,
the computational effort. We demonstrate the consequencéBmuae0)- (b) The dimensionless lattice sum per particle of the fittest in-
of the lattice-biased version of the GA in Fig. 6 with the divi'dual, BLm/N, of generation with index as a function ofi; lines
following example: we have chosen a state point where th& @

star polymer fluid freezes into the A15 structure; the conven-

tional unit cell has cubic symmetry and a basis of eight parturned out to be largely sufficient, for most of the state points
ticles (cf. Fig. 2 and the discussion in Sec. II)An Fig. 6  studied convergence was already obtained after a consider-
we display the dimensionless lattice sum per particle of theybly smaller number of generations.

fittest individual of generation with indeix ,BL[i]/N, calcu- We therefore strongly recommend to test thoroughly
lated via the conventional GA and via the lattice-biased verthese numerical parameters in practical applications. Further,
sion of the algorithm; in the latter case, a simple culsih ~ computational effort can be economized by using and/or
lattice was assumed with fixed lattice vectors and only theadapting the refined concepts introduced in the preceding
positions for the eight particles of the basis were optimizedsection. In particular, modifications of the fitness function
Even though the conventional algorithm converges faster, thfnvllowing the lines of expressiofl9) have turned out to be
lattice-biased version leads to a lower result for the latticeextremely useful in high dimensional search spaces. We
sum and thus to a better starting value for the subsequembint out once more that tHgroblem-specificevaluation of
hill-climbing search. the fitness function represents the bottleneck of the GA: most
of the computational effort can be economized here.

Let us now consider the mutation step in the GA and
demonstrate in the following that it represents a very impor-
In this section we turn our attention to the role played bytant part of the GA. In Fig. & we display BL;;/N as a

the numerical parameters of the algorithm and present sonfenction of the generation index once it has been calcu-
details regarding the choice of their precise values. In théated with a mutation probabilitp,, aie=0.01, then we have
course of the present investigation but also in dealing witrsuppressed the mutation completely in the GA., Pmutate
other applications, such as clustering transitions and quas&0). The curves clearly demonstrate that mutation is an in-
two-dimensional systems we have come to the conclusiodispensable ingredient to improve the quality of the fithess of
that the optimal choice of the numerical parametéts Ng,  the individual as the generation develops: fafy=0, the
length of binary representations, gtare strongly problem GA leads after a few generatiofis= 6) to an individual with
specific and therefore no general guidelines can be provide@. relatively small value for the lattice sum and from there
For the present contributiorl;=1000 andNg=100 have onwards the quality of the individuals does not improve any

B. The role of the numerical algorithm parameters
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more. On the other hand, fg,,=0.01 there is a steady and is thus clearly superior to the conventional approach.

improvement in the lattice sum of the fittest individualias The calculation of the fitness function, representing the

increases over nearly 70 generations. The influence of mutdottleneck of the algorithm, has been restricted to simple

tion on the genetic diversity can be seen in Fign)7here we  concepts to calculate the free energy, such as lattice sums,
display Afp;;, i.e., the difference in the higheét, i) and  Einstein models, or simple density-functional formats.

the lowest(f,qi7) fitness values encountered in the genera- ~ Further, we have presented conceptual and numerical re-
tion with index i. While for ppuae=0, Aff;; soon reaches finements of GAs Whi_ch aim qt_ an increaseo_l convergence
values close to zer@\ f;;;=0.1 fori = 30), the genetic diver- Speed and on numerical stability, thus offering access to

sity in the individuals over the generations fof >0 is  MOre complex approaches and to more refined schemes to

clearly visible by the relatively largaf;; values and their ~calculate the free energy. We have shown that modifications
strong variation as a function of We point out that these of the fitness function and a lattice-biased version of the GA

results nicely reproduce those findings that were reported ofit" lead to a cqn3|derable Increase in the convergence §peed;
the mating behavior oParus caerulel® mentioned in the W€ have also discussed the numerical parameters and, in par-

introduction: for those birds the extra pair matiGghich t'cw\%_’ :]hehlmportancg of thedr:_utat_lon step. ic algorith
corresponds in our case to the mutation slepds to a ge- ith the appropriate modifications, genetic algorithms

netically diversified offspring, which has higher survival can also be applied to a relate_zd k.)Ut much more complex
chances and an increased fithess. problem, namely, to the determination of ordered structures

in confined systems, lying between two and three dimen-

sions. Preliminary results in this direction reinforce our claim

V. SUMMARY AND CONCLUDING REMARKS regarding the enormous predictive power of these tools.

We have introduced GAs as a new tool to a standarcdNCe Up to now the power and the attractive features of GAs

problem in condensed matter theory, which—despite consid?@V€ not been sufficiently recognized neither in physics nor
erable efforts in past years—is still a nontrivial one: the pre[" chemistry(while they have proven to be very attractive in
diction of equilibrium structures in freezing transitions. Many other fields we hope to motivate with the present

Since such transitions have already been thoroughly studiggPntribution condensed matter theoreticians to a more wide-
over past decades in systems with harshly repulsive systen%‘?read use of this attractive, useful, and easy-to-handle tool.
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