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Abstract. — In an effort to approach a quantitative determination of the phase diagram of
polydisperse mixtures of (possibly size-asymmetric) charged hard spheres (CHS), we propose
a concept that explicitly takes into account the association of the ions into dimers, i.e., an
effect that is known to be of high relevance close to the liquid-vapor phase boundary in the
restricted primitive model (RPM). We use the polymer mean spherical approximation (PMSA)
to calculate the properties of this polydisperse mixture of dimers. The concept turns out to be
a truncatable free energy model, thus the phase diagram can be calculated by solving a highly
non-linear set of equations. We present the full phase diagram (in terms of cloud and shadow
curves and binodals) and discuss fractionation effects for a model system.

Introduction. — The critical point of the restricted primitive model (RPM) for elec-
trolytes, i.e., a binary mixture of oppositely charged hard spheres (CHS), was believed to
exist over a long time [1,2]. However, it was verified only in the 1970s when both Monte Carlo
(MC) simulations [3,4] and statistical-mechanics—based theories [5, 6] provided confirming
results (for an overview see [7]). Ever since, considerable effort has been dedicated to a quan-
titatively reliable description of the coexistence curve and, in particular, to an exact location
of the critical point of the RPM. Meanwhile, computer simulations have provided —as a con-
sequence of significant progress in methodological and computational developments— a highly
accurate picture [8-11]. On the other hand, results obtained in theoretical concepts are less
satisfactory: standard liquid-state theories either do not converge in regions sufficiently close
to the critical point [12], or predict —as, e.g., the mean spherical approximation (MSA)—
critical parameters that differ by a factor of ~1.6 in temperature and ~0.2 in density from sim-
ulation data. Ounly recently [13-17], could significant improvement of these values be achieved:
these sophisticated concept, are based on the meanwhile well-established fact [15,18-23] that
close to the phase boundaries the RPM is characterized by a high degree of ionic association,
i.e., its properties are dominated by the presence of neutral clusters, while the amount of free
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ions or charged clusters is negligible. And indeed, inclusion of these effects has brought along
a substantial improvement over simple approaches (such as the MSA): now results differ from
the “exact” simulation data for the critical point only by a factor of ~1.3 in temperature and
~0.6 in density. In these studies it was assumed that all the clusters formed upon association
in the system are represented by so-called minimal size neutral clusters (MSNC), i.e., dimers
in the case of 1 : 1 model, trimers in the case of 1 : 2 model, etc. These clusters were then
treated within the framework of the polymer MSA (PMSA) [15,21,22].

The RPM represents undoubtedly a suitable model for electrolytes or molten salts. For
fluids of charged mesoscopic particles (such as macromolecules, colloids, or micelles), how-
ever, the RPM is a rather idealized model, since it does not consider polydispersity, i.e., a
characteristic feature of colloidal suspensions, which is —as a consequence of the production
process— omnipresent in such systems. Thus, a polydisperse mixture of CHS would represent
a more appropriate model. Unfortunately, for theoreticians this brings along considerable
complications: compared to monodisperse systems, computer simulations are now dispro-
portionately more expensive and successful theoretical concepts that are able to predict the
phase behavior on a quantitative level are up to date rather rare. Still, it is highly desirable
to have detailed information about the phase diagram of such a system: academic interest
will certainly focus on polydispersity as such, which leads to an intriguing phase behavior and
phase transitions, and fractionation effects [24]; technology, on the other hand, will rather be
interested in realistic polydisperse charged systems, such as the ones mentioned above.

In this letter we present a new and comprehensive concept that captures the two particular
features of polydisperse mixtures of CHS in an appropriate manner and thus offers a route
towards a quantitative determination of the phase diagram: it takes explicitly into account
both the polydisperse character of the mixture as well as ionic association effects.

We view a polydisperse system as a mixture with a (formally) infinite number of compo-
nents, each characterized by a continuous species index x. The amount of each species x is de-
fined via the distribution function f(x), which is positive and normalized, i.e., fooo dzf(z) =1.
f(z)dz is the fraction of particles with species index Z € [z,z + dz]. The main problem to
determine the phase behavior of polydisperse mixtures lies in the fact that the Helmholtz free
energy is now defined in a space of infinite dimensionality, where the coexistence equations
have to be solved. Recent contributions have demonstrated that the concept of truncatable
free-energy models [24] represents one of the few (conceptually and numerically) viable routes
out of this dilemma [25,26]: here the free energy can be expressed by a finite (but large) num-
ber of generalized moments of f(x), mapping thus the infinitely many coexistence equations
onto a finite set of relations. To cope with the association effects, we have generalized the con-
cept of MSNC to polydisperse mixtures of CHS which is treated within the PMSA [15,21,22].
The model turns out to be a truncatable free-energy model; although the resulting framework
is rather intricate, it offers for the first time access to the full phase diagram (in terms of
cloud and shadow curves and binodals) of a polydisperse mixture of CHS.

Our model includes a possible size asymmetry, while it is restricted (at least at present)
to the charge-symmetric case; in this sense the present contribution is preliminary. Inclusion
of asymmetry in charge would lead to formation of n-mers (n > 3) which would require a
considerably more complex formalism. For the future we plan to use our MSNC concept to
study polydisperse models of highly asymmetric electrolyte solutions (i.e., mixtures of large
and highly charged polydisperse macroions and monodisperse small counterions) generalizing
the corresponding solution of the PMSA presented in [27].

With the present concept we realize two goals: i) we pass the level of the MSA (that we
have used recently in [28]), which, being a linear theory, is definitely unsuited to treat strongly
interacting systems; ii) despite its conceptual and numerical complexity the present concept
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offers the possibility of systematic investigations of the phase behavior of polydisperse mixtures
of CHS, something which is —at least at present— out of reach for computer simulations, as
they require an increased computational effort of one or two orders of magnitude and therefore
can only be applied to isolated systems [29]. In this letter we present the first results; for a
detailed presentation of the rather complex formalism we refer to [30].

Model and theory. — We consider a polydisperse mixture of CHS, i.e., a polydisperse
generalization of the 1 : 1 size-asymmetric electrolyte primitive model (PM). The species
of the particles are characterized by two continuous variables, the charge z and the size o.
Assuming additivity in size, i.e., 012 = (01 + 02)/2, two particles of the species (01, 21) and
(02, z2) interact via

00, r S 012,

®(r;o1, 21,02, 22) :{ (1)

e?z129]er, o12 <1 < 00.

The particles are immersed in a dielectric continuum with a dielectric constant € at tempera-
ture T'; further, 5 = 1/kgT and 8* = e¢3/e. The number density of the system is p = py + p—
and the system is neutral. z and o are distributed according to a positive, normalized dis-
tribution function; in an effort to keep the conceptual and numerical effort within reasonable
limits we make the physically sound choice that the charge of the particles is proportional to
their surface, i.e., 24 (0) = £02/(0?)+, where (0?) is the second moment of the distribution
function; we are thus left with o as the only continuously distributed variable. Introducing
(0)+ = [, doofi(o) with (0)— = 7(0)4, we assume for the distribution functions of the
positively and negatlvely charged particles f+( ) f(o) and f_(0) = 771 f(0/7) so that the
average charge is (2)1 = [, doz4(0) f+(0) =
We investigate the two-phase equilibrium of a polydisperse mixture of CHS: at a given
temperature T the mother phase, characterized by the distribution functions fj(to)(a) and the
number density p(©), separates into two coexisting daughter phases, with distribution functions
j([k)( ) and densities p®) I =1,2. The superscripts denote the properties of the respective
phases: 1 stands for the low dens1ty (gas) phase and 2 for the high-density (liquid) phase.
Generalizing the concept of MSNCs to the polydisperse case, we now have to consider a
polydisperse mixture of neutral dimers formed by two oppositely CHS with the size ratio 7.
PMSA [21,22] is certainly an appropriate tool to calculate the thermodynamic properties of
this system, which will then be required to determine phase equilibrium. The solution of the
PMSA for a multicomponent mixture of CHS [21,22] can be reduced to the solution of one
single non-linear equation for the scaling parameter, I'. These expressions are readily gener-
alized to the polydisperse case, replacing the discrete set of concentrations by the continuous
distribution function and summations over discrete species indices become integrations over
the distribution function. For the mother phase, with f(c) = f(®)(¢), this equation reads

QZWﬁ*p/O dO’f { ZZC%FZ #HZF} (2)

where the index a takes the values — or +; further I'y = I'y(0) = [1 + (8ay + 700_)o |71,
Zo =Zo(0) =z — (0ot + Too—)oN, 2= 2(0) = 24.(0), A =7D/(2A+7Q), A =1—7(3/6,

1

Cm;p(1+rm)/ooodgamf(a)7 D2p/oood0f( Joo[Iy =71 — (1 —7)It],

Q—l/oodf()?’ ret o0+ 2
_2p0 ogjlo)o + T T 1 1—|—TH7
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and Iy = Iy I'_. Similar relations hold for the I’s of the daughter phases, introducing
the yet unknown functions f(*)(¢), k = 1, 2. Note that for the present model we have
F90) = f® (o) and fP (o) = 771 f®) (0/7) (k =0, 1, 2). For details see [30].

Knowing the I'’s for each of the phases, we follow Bernard and Blum [31,32] and present
expressions for the excess (over ideal gas) pressure and chemical potential, AP and Au(o):

1 1 ¢ reoo2p
= (HS) _ = _z A I 2
BAP = AP sTAG = TG <1+ 3A) - N (3)
88u(o) = BB (o) + A (ro)] —n [ (227 1| -
IA\2A 1471
1 3 217
—67'('0’2 |:§)\2(1—|—7'2)+0(1+7’3)(>\1+—C2)\2 ] - { |:FFE+ H)J} -
2721 1
— 22A[2Ds — I'(1 — 7)o] — A26° F+ T QN lt | | )]} (4)
1+7 3
1 o0 (14 7)0p1 + 2700,
An == d ) =1,2, 5
2P/O Uf(a)(1+T)A+%7TUTC2 n (5)

where I's, = I'y +1"_. The corresponding properties of the reference system, i.e., a polydisperse
mixture of uncharged hard-sphere (HS) dimers (I" = 0), are calculated via Wertheim’s ther-
modynamic perturbation theory [33,34]; APMS) and AuMS)(0) are the excess pressure and
chemical potential of a HS system, which are calculated using the semiempirical expressions
due to Mansoori et al., generalized to the polydisperse case [26]. Those thermodynamic prop-
erties which we require to calculate phase equilibrium depend at given temperature T* = 1/5*,

and given p(® and fi (o), only on a finite set of generalized moments of fio)(a).
Equilibrium conditions require conservation of the total volume and of the total number
of particles of each species. Further, the truncated free-energy concept guarantees that the
(formally) infinitely many coexistence equations (i.e., P(Y) = P®) and u(M (0) = u® (o) for all
o) are mapped onto a set of 18 coupled, highly non-linear equations (see [30]); for each phase
we have seven unknown generalized moments {1, (2, (3, A1, A2, D, Q}, and, in addition, p and

I'; once they are determined, the f (k)( ), k =1, 2, are calculated following a scheme developed
earlier [25,26,28]. The equations are solved with a Newton-Raphson—based algorithm.

As explained in [26] we have used a Beta-distribution function for the mother phase, which

is specified by three parameters [26,28]: the average size of the particles, o = <a>$), the width,

Dy = <02>(+°)/ag — 1, and the cut-off diameter of the distribution function, o** = 2<a)f).

Results. We present results for a specific system which is a generalization of the 1 : 1
size-asymmetric electrolyte PM characterized by o'** = 20q, o = 2709, Dy = 0.01,
and 7 = 0.7. In fig. 1 we show the liquid-gas phase diagram; it includes the cloud and
shadow curves, along with three binodals for three selected densities, one of them being
the critical density p, = peog = 0.102. For reference we also display the binodal curve
for the (bidisperse) PM calculated within the PMSA [15] (fig. 1a) and the MSA data for
the polydisperse system (fig. 1b). Comparison between the bidisperse and the polydisperse
CHS fluid shows that polydispersity shifts the critical point to higher densities and to higher
temperatures: pg. = 0.102, TS = 0.086 in the polydisperse case, while pg, p,, = 0.076,
T} par = 0.076 in the case of the bidisperse mixture (PM). Comparison between PMSA and

MSA for the polydisperse system points out that the strong asymmetry in the MSA results
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Fig. 1 — Phase diagram of a polydisperse mixture of CHS with 7 = 0.7. (a) Cloud and shadow curves
(solid lines); binodals: broken lines are for p(®* = 0.04(1),0.102(2),0.2(3); the dashed-dotted line is
for bidisperse PM with 7 = 0.7; (b) MSA [28] (dashed lines) and PMSA (solid lines) phase diagrams.

for the cloud curve is taken away; as a consequence of the association effects the critical
temperature is decreased while the critical density becomes larger. In fig. 2 we study the
influence of size asymmetry and of polydispersity on the location of the critical point and
display T and pf, as functions of 7 for two values of Dy, i.e. Dy = 0 (bidisperse case) and
Dy = 0.01; results are calculated within PMSA and MSA. We have also added MC simulation
data for the PM [35,36], which is the limiting case as D(®) — 0; similar results for finite
polydispersity, i.e., D©) > 0, are not available in the literature. Both MSA and PMSA are
able to describe the increase of T and p%. with the decrease of 7 (i.e., increase of the size
asymmetry) for 7-values down to ~0.33 and ~0.23, respectively. As 7 is further decreased,
simulation predicts a decrease in T}, and in p},, while the corresponding MSA- and PMSA-
curves continue to increase. In the entire range of T-parameter, MSA gives too high values
for T7 and too low values for p},: this is a consequence of the fact that MSA is not able to
describe ionic association properly. PMSA, on the other hand, is able to take ionic association
into account, at least on the level of complete dimerization; this modification substantially
improves MSA results: 77, is shifted to lower values and p}. to higher values, respectively,
approaching thus, at least for the bidisperse case (D(o) = 0), the simulation data. At this
point we add an —admittedly— rather speculative remark: due to the lack of simulation data
for the critical point in polydisperse CHS mixtures, we estimate —based on the MSA and the
PMSA data for the polydisperse case and on simulation data for the 1:1 PM— the location
for the critical point of a polydisperse CHS mixture in simulation (see fig. 2, open squares)
as a function of the size asymmetry parameter 7 in the range 0.33 < 7 < 1.0. Based on this
extrapolation, we expect that both T} and p}, will increase in this range with decreasing 7.

Leaving a more detailed discussion of the daughter distribution functions, f*) (o), k = 1, 2,
to a later contribution [30], we focus here rather on a quantitative analysis of fractionation

effects: we consider the respective first moments, (a>(i]C ), which give information about the

size-distribution of the particles and on the widths, D(k)7 in the daughter phases, indicating

the degree of polydispersity; for their definitions we refer to [26]. From the (0>(ik ) (fig. 3a), we
observe that along the shadow curve fractionation has its strongest effect: smaller particles
prefer to be in the gas phase, while the larger ones are predominantly encountered in the fluid
phase. Note that these effects are stronger for subcritical densities, while for supercritical
densities (a)gf) ~ <a>(i0). The width of the f(ik)(a) —fig. 3b— show a distinctively different
behavior than in the MSA [28] where for all temperatures Df) < Di))(: 0.01): for densities
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Fig. 2 - T} (a) and pZ; (b) vs. 7 = (o)_ /(o) + for polydisperse mixture of CHS at Dy = 0 (bidisperse
mixture, lower lines) and Dy = 0.01 (polydisperse mixture, upper lines), as predicted by MSA (dashed
lines), PMSA (solid lines), and the extrapolation scheme (open squares, see text); MC simulations
(filled triangles [35] and filled squares [36]) only for the bidisperse case. Arrows indicate how the
critical parameters vary as Do changes from 0 to 0.01.

(2)
+

below the critical density and for higher temperatures, D"’ can exceed in the fluid phase the

values of Df ); for this parameter range the ff) (o) of the fluid phase are broadened with

respect to the fj(to)(a). In addition, for p* < p¥,, and for lower temperatures, Dg) < D(f),
while at higher temperatures, D$ ) > Df ), leading to a loop-like shape of the Df )_curves

(broken line in fig. 3b). A particularly non-monotonic behavior is observed for the values of
Df ) along the shadow curve, which is in distinct contrast to the MSA results.

Conclusions. — With the concept presented above we are able to calculate the full phase
diagram of a polydisperse, possibly size-asymmetric mixture of CHS, taking into account
association effects on the level of dimers. For a particular system we have discussed the phase
diagram and fractionation effects. By varying the polydispersity and the size asymmetry of
the system we are able to predict how the location of the critical point will vary with these
parameters. With this contribution we hope to encourage computer simulation experts to
perform similar investigations and to test the reliability of the data we have predicted.
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Fig. 3 — First moment, (a)gf) (a), and width, D$> (b), of the daughter distribution functions fj(:k>(a)
as discussed in the text for the polydisperse mixture of CHS along the binodals for the parent phase
densities p(®* = 0.04 (broken line), p@* = p% = 0.102 (full line), p@* = 0.2 (dash-dotted line),
and along the shadow curve (thick full and thick broken line). In (a) the dotted vertical line through
(a)f)/(a)ﬁf) = 1 separates the gas (left) from the fluid (right) region.
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