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Structure and thermodynamics of binary liquid mixtures: Universality of the bridge functional
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We investigate in detail a thermodynamically self-consistent method to calculate the thermodynamics and
structure of a binary mixture of simple liquids, introduced recently by one ¢¥uRosenfeld, J. Chem. Phys.
98, 8126(1993; Phys. Rev. Lett72, 3831(1994; J. Phys. Chem99, 2857(1995; Phys. Rev. E54, 2827
(1996]. This approximation is based on the universality hypothesis of brfdgetionalsand leads to a
modified hypernetted-chain-type closure to the Ornstein-Zernike equations. We employ the fundamental-
measure bridge functional of hard spheres. The bridge functions are calculated from this functional by inserting
the appropriate structure functions of the actual system and of a suitably chosen hard-sphere reference system.
An iterative procedure is repeated until numerical self-consistency is obtained. We demonstrate the reliability
and wide applicability of this method by comparing numerical results with computer simulation data for a large
variety of systems. Finally, we show for the example of the classical inversion problem of liquid state theory
that our method can indeed replace computer simulations in more complex procedures without loss of humeri-
cal accuracy[S1063-651%96)08911-§

PACS numbd(s): 64.70.Ja, 61.20.Ne, 61.25.Mv

I. INTRODUCTION highly nonlinear set of coupled equations in two or three
unknowns where, in addition, it is not always guaranteed that
The development of liquid state theory during the past 3(a solution is foung
years was characterized by a steady change in predominance An approach was introduced recenfly—10Q that treats
between different basic concepts for the determination of thene-component systems and mixtures on equal footing. It
structure and thermodynamidsuch as integral equations, starts from the Euler-Lagrange equations, which allow the
simulation methods, and perturbation theories; see,[d)y., determination of the one-particle density of an inhomoge-
By now, the one-component case seems to be settled: theseous liquid(“density-profile” equation$ subject to an ex-
three groups of methods yield, at the respective highest levaérnal field. From these equations we can derive a
of sophistication and efficiency, results for the structure andypernetted-chaifHNC) type equation for these densities;
thermodynamics that are equivalent within numerical accuin those equations the excess free-energy functibpakn-
racy [2]. However, the binary case is, from the conceptualters, which, via functional relations, is closely related to the
point of view, more complex and sometimes still leavesbridge functional. In previous applications of the modified
problems unsettled; it therefore represents a stringent test férypernetted chainfMHNC) or the reference hypernetted
a recently introduced liquid state theory. In recent years, @hain (RHNC) approximations(e.g., [11]) the unknown
diminishing interest in perturbation theories has been obbridge functions of a given system were replaced, based on
served, leaving thus integral equations and simulation techarguments provided by the universality hypothddig], by
nigues as main concurrents. The problem of thermodynamithe bridge functions of a suitably chosen hard-sphé&t®)
inconsistency could not be coped with properly in integral-reference system; these functions can be calculated easily
equation approaches to the binary case. Thermodynamic invithin the Percus-YevickPY) theory[13] or from the semi-
consistency is caused by the approximations done in the derémpirical parametrization due to Verlet and WEld]. The
vation of the closure relation from exact thermodynamicmethod imposes universality at the level of the bridigiec-
relations; as a consequence, different equations of state yiettbnal; similar to the bridgefunctionsof a HS system, this
different results for thermodynamic quantities. Simulationfunctionalcan be calculated very easily for the general case
technigues do not suffer from this drawback since they arepf inhomogeneous hard sphek@svolving only fundamental
by definition, thermodynamically self-consistent. During themeasures[15] and specialized, as required for our case, to
past years several attempts have been proposed for integrilemogeneous hard spheres. This fundamental-measure
equation techniques to overcome this consistency probleroridge functional is given in terms of characteristic quantities
(such as, e.g[3-6]). These approaches are mostly based orof theindividual spheres and involves only integrations over
generalizations of the one-component case, which, howeveknown functions. Furthermore, in this approach the free-
brings along both conceptual problegssich as, for instance, energy functional can be optimized by imposing the test-
the restriction to additive reference systgnas numerical particle (or source-particleself-consistency, which is real-
problems(a simple equation in one variable now becomes &dzed by the transition from an inhomogeneous system to a
homogeneous one if the source of the external potential be-
comes a particle of the liquifil6]. The Ornstein-Zernike
“Permanent address: Nuclear Research Center Negev, P.O. B60Z) equations are then solved for the structure functions of
9001, Beer-Sheva 84190, Israel. the homogeneous system along with the closure relation
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where the bridge functions are calculated by means of theata of computer simulations; we furthermore demonstrate
abovefunctional assuming that the universality hypothesisby considering the inversion problem that our method can
is valid. The structure functions obtained are then fed intdndeed replace computer simulations without loss of numeri-
the bridge functional, yielding an improved set of bridge cal accuracy. The paper is concluded by a summary in Sec.
functions. This procedure is iterated until numerical self-IV. Appendixes A and B contain all the necessary expres-
consistency is obtained in a sense that the structure functiorons that are required to construct the bridge functional and
of the preceding step differ only marginally from the presentthe derivation of the criterion for the reference system pa-

step. rameters.

The aim of the present paper is twofold. First, we would
like to demonstrate the reliability of this approach in direct Il. THEORY
comparison with computer simulations for mixtures. The _
systems chosen cover both standard model systems of liquid A. Basic concept

state theoryHS systems, Coulombic systems, and Lennard- |n an inhomogeneous liquid df componentgand con-
Jones(LJ) mixtured, as well as realistic mixtures, such as centrations;) where the particles interact via pair potentials

binary metal alloys. In particular, attention has been paid tQDij(r) and are subject to external potentials
test the reliability of the approach in “nonstandard” cases:y(r), i=1,... N, the single-particle densitig®r density
strongly nonadditive systems with respect to both distancgrofileg p={p;(r),i=1,... N} are obtained from the
and potential depth. In general, we observe very good agre¢=yler-Lagrange equations, i.e., by minimizing the grand po-
ment between our results and simulation data. Discrepanciggntial [ p] with respect to the;(r) [27],

are encountered for extreme choices in nonadditivity, where

we reach either the limit of the numerical stability of the SQ[ p]
algorithm or the limits of stability of the system considered. 5p;
The other aim of this paper is to show that our approximation

is in fact almost as accurate as computer experiment and i‘?h d potential is ai b
therefore able to replace simulations in more complex algo- € grand potential 1s given by
rithms with only little loss in numerical accuracy. To this end
we have chosen the problem of inversion in classical liquid _

state theory: there one tries to extract an effective interatomicyLP1 = Fidl P1TFelp]+ Z f drpi(Lui(r) = il, 2
pair potential from a given pair structure. An accurate and

satisfactory solution of this problem is essential for the inter-Where the u are the chemical potentials and
Fretati](in of experimental scattering dai&]. Among others o={pi=pC; iill N} denotes the bulk densitiésum-
18-21], a satisfactory approach has been proposed b bl .
Levesqueet al. [22,23. Their procedure is an iterative gewsrs'iﬁ)s Pdls ';he tottallj(htqmrggenequS'Ilzumb;r densgy.
predictor-corrector algorithm where the corrector step is rep-.. e e ideal contributio dlp] In Eq. (2) can be
resented by a computer simulation. Applications to realistid'Ve" by the exact relation

systemgliquid Ga[24]) demonstrated the power of this ap-

proach. The method has been generalized to the binary case _

[25]: it was found that there the method is as powerful as in Fid[p]_kBTEi: J' drpi(r{In[p;(r)\;]—1} ()
the one-component case for “standard systems.” The draw-

backs are rather caused by numerical inaccuracies in the ¢
rector (simulation) step, in particular, if the concentration of
the minority component is smafl.e., <5-10 %: then the

}(r)zo, i=1,... N. (1)

0(rt-he \; are the de Broglie wavelengthdhe crucial quantity
within this framework remains the excess part of the free

g : . ; —energyF] p], which stems from the interaction of the par-
statistical error of the simulation resulfior typically 4000 ticles. A hierarchy of the direct correlation functions

7000 particle ensembless too large and leads to an accu- ) ) : .
mulatign of errors and, finally, to Sncertainties of the results.c(lr.])-_’-F.D,n[_l’](rl* .- ) is derived fromF¢,{ p] via functional
Smoothing procedures have turned out to bias the results arift"vatives(FD) with respect to the one-particle densities:
hence fail as wel[26]. In this paper we have therefore re-
placed in this inversion scheme the simulation step by our (1).FD SF I p]
method (based on our demonstrated assumption that thEeT G 1pI(r)=— i elpl(ry)=— 5p; (ry, 4
present integral-equation results are comparable in accuracy '
to the computer simulationsThis replacement helps us to 5
avoid the above-mentioned problems for small minority con- KeTC2 O p](ry,rp) = — 0°Fed p]
centrations to which integral equations are insensitive. B1% LPIT1.T2 8pi Sp;
The paper is organized as follows. In Sec. Il we briefly
present the basic concept of our approach and present thge |, are the excess chemical potential functionals and
necessary expressions for the determination of the structuie '

}(H,fz)- ®

> ; z is the Boltzmann constant. We start from(farmally
a’.‘d thermodynamlps. Sections 11 A and II B aré CONCernegyy 4cy functional Taylor expansion df{ p] around the uni-
with the numerical implementation of the algorithm. Sectlonform fluid limit in terms of theA p;(r)=[ p;(r) — p; ol:
Il provides details about the reference simulations that we P pi Pi.ol-
have performed and contains a detailed comparison between

the results obtained by our density-functional method and Felp]=F& [ po;pl+Falpoipl. (6)
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Cibyi(r)+cibj(r)
Ct+Ci

F&Lpo; pl is given by ()=
ti -

: (12)
F2po;p]=F - i f Ap
exLpoip]=Felpol Z #iedpol | dr Api(r) which have to be introduced in this form in order to preserve
T symmetry in the indice$b;;(r)=b;(r)] in this generaliza-
_LE f f dr dr’c-(-2>'FD[po](|r—r’|) tion of the test particle formalism to the binary case.
2 1 N For a givenF ¢ p] the density-profilgDP) equations(9)
, and(10) can now be solved and yield the PDgg (r). On
X ’ : A . . .
Api(NAp(rY) @ the other hand, the direct correlation functiog) ™(r)
(PP pol(Ir—r') is the direct correlation function of the [obtained via functional dgzrivative frofied p] via (5)] ful-
homogeneousgbulk) system. In the above Taylor expansion fill, along with the PDFsg;;*(r), the Ornstein-Zernike rela-
the exact terms up to order 2 are subsumeﬁfﬁ?[p] and tions
the subsequent termﬁgx[p] contains all contributions of or-
der three and higher. It is related to the bridge functional hffz(r)=c§i2)’FD(r)+§j: Pj,oJ dr’c}iz)*FD(lr—r’|)hfj’z(r’).

Bilpo;p](r) via (13

. 1 5':2([!’0;[’] L
Bi[ po;pl(r)= Pacd (r). (8) Up to now no approximations have been made.
B Pi If we were to know theexact K] p] then the two sets of
It can now be shown for a fluid in contact with a reservoir PDFs(labeled OZ and DPwould be equali.e., consistent
bulk fluid of densityp, that Eq.(1), which determines the this consistency is referred to as the test particle self-

density profiles, can be cast in ttedNC type form [7—10] cons_istency. However, since_ for realistic applications_ ap-
proximations have to be admitted to construct the functional

1 ) of the excess free energy, this consistency will, in general, be
In{gi(r)]=- |<B_Tu‘(r)+B‘[p°’p](r) violated, i.e., thegp™(r) will differ from the g)(r). Never-
theless, given some model for the bridge functiofeid
_ 1~(2),F o Py hence forF¢J p]), this functional can be optimized by im-
+§j: P,,of drei pol(Ir—r'Dlg;(r) 11, posing self-consistency, i.e., by requiring that E4<) and
) (13) are fulfilled.

Several years ago the universality hypothesis of the bridge
introducingg;(r) = p;i(r)/p; o; the bridge functional8) turns  functions[12] introduced a breakthrough in the actual imple-
out to be given by mentation of the MHNC and RHNC methods: this hypoth-
esis “allows” the bridge functions of a given system to be
replaced, within a good accuracy, by the bridge functions of
a suitably chosen HS reference system. In the present method
this hypothesis is generalized to the levelfofctionals to
+> P, Of dr'c@F po1(|r—r7)) this end the contributioﬁg)[p] in (6) is replaced by a func-

j ’ ! tional Fg)’ref[p] of a suitably chosen reference system,
which generates the bridge functional of the reference sys-

1
Bi[po;p](r)= kB_T{Mi,e{P](r) — Ki,ed Pol}

#Lgi(r) =1, (10 tem, B/*T po;g](r), similar to(8) and
Following an old idea of Percyd 6], we recover within o
this formalism the properties of thBomogeneousiquid byi(r)=Bi"[po:gl(r), (14

from theinhomogeneoubquid by interpreting the source of -
the external field§u;(r)] as a particle ) of the liquid itself, Wrr;?reg Sta“‘?'s for the set Of, PDFgy(r). Similar to (10),
situated at the origin and interacting with the other particle3i” LPo:9](r) is found to be given by7-10]

via u;(r) =d,(r); the formalism is called the source or test 1

particle method and will help us in the following to describe B[ po;g](r)= k—{MrefiP](r)—M'rEfx[Po]}

the properties of the homogeneous system. gifie) intro- gT e he
duced above now become the pair distribution functions
(PDFs9 g;i(r) and the density-profile equatiof®) reduce to +> P, of dr/ci(j2),FD, ©f o] (r—r"])
~ Pi.
1 N
|n[9ti(r)]:—|(B—Tq’ti(f)+bti(f) X[g;(r')—1]. (15
» FD Note thatB{ef[pO;g](r) also contains the structure functions
+2 p;,of dr'ci? P(|r—r'|) 0:i(r) of the considered system.
! Two questions now remain opefi) what reference sys-
X h.:(r’ 11 tem is chosen to provide the reference bridge functional and
t](r ) ( )

o (i) how do we determine the parameters of this reference
h;(r)[=g(r)—1] and theb,(r) stand for the symme- system? The most natural choice for a reference system in
trized bridge functions liquid state theories for simple liquids are hard sphéses,
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e.g., Refs[1,28] and other papers cited thergitn addition,
as it has been shown recently by one of 15, it is possible {0y = 0
to construct an excess free-energy functioﬁaf[p] [and =0
henceBiHs[po;g](r)] for a binary system of additive HS I

compatible with the analytic PY solution of the OZ equations solve 1INC equations
[29]. (There are indications that also for other model systems for pair potentials
for which analytic solutions exist in liquid state theory, such @4 0r) + (1/ )
as HS Yukawa systems, such a functional might be con- solution: {g(r)}
structed, however, with a much larger formal effi30,31)). :

This HS free-energy functional will be used as the reference
free-energy functiondﬂif[p]. Details about the construction
of this functional and the resulting expressions for the bridge
functional B[®[ po;g](r) are given in[7,8,19 (see also Ap-
pendix A). The second question of how the parameters of

finish n=ntl

[n+1] ]
b = b

this reference system are determined can be answered fol- evaluate the bridge-functions
lowing similar lines as in the MHNC-RHNC approxima- {87000} feom functional
tions: for the bridgdunctionbased methods, Lad&1,32,33 \l\_'({;.(';“{'l']i(}({i_'\;f;;l?]l‘
has derived criteria for the determination of the packing frac- parameters {d, )

tion of the HS reference system. As outlined in more detail
in Appendix B, we can generalize these criteria to our bridge
functional based method and arrive at the following equa-

. R i change reference
tions, which fix the parameters of the reference system: system parameters
{di;}

ado’s equations
(16} satisfied ?

iEj Pi,on,of dr[gij(r)—girff(r)wbﬁef(g;r)=0. (16)

o FIG. 1. Flow chart of the numerical implementation of the pro-
A similar and more easy to handle, though less accuratgssed algorithm.

criterion
This solution is the starting point of an iterative process.

> pi,op,-,of drlgij(nN—gff(NIbffi(gr=0 (17 , ,

T (i) The structure functiongN“(r)=g[’!(r) (and the

her correlation functionsare fed into the bridge functional

5) yielding the bridge functionb;;(r) via (14); for the HS

reference system some set of diametgys and d,, is as-

aﬁf(g;r) sumed(actually, in a first guess, we pick some value for the

> pi,opj,of dl’[gij(r)_girjef(r)]l(;d—zo, k=1,2,  packing fractiony and the ratio of the diameters is fixed to

L kk some value characteristic for the system as, e.g., the posi-

(18 tions of the minima in the potentials

i.e., a set of two coupled nonlinear equations in two variables I(ii,) The OZ equations are solved along with the closure
(dy, anddyy). relations

Once the above problem has been solved it is easy to _ —
extract all further structural information. We can therefore i (1) =€xXH = B®i;(r)+h;;(r)—c;j(r) +b;;(N], (20

now proceed to the determination of the thermodynamic{Nith the bridge functions taken frorfi4)
properties. Pressure and internal energy follow from the stan- (iii) The expressions i16) [or (17)] are evaluated for a

dard relationg1]. Like in the implementation of the univer- . t of tors ddos if th t of led
sality of the bridge functions, we can replace the Lado crited'VEN SEL OF parameter,, and da. If the Set ot coupie
quations are fulfilled then we proceed with the next step

rion by choosing the reference parameters such th . ) .
y 9 b Iv); if the equations are not fulfilled, then the parameters are

thermodynamic consistenty obeyed. But this does not al- e . " L
low the local determination of the free energy and chemicagt)d'f"ad and we go back to the preceding siép again this

potentials, which have to be obtained by integration along oop is realized in a first, coarse search ipand assuming a

thermodynamic patlafter solving the integral equations for ixed ratio of diameters. In a refinement step we introduce
the set of points in theg,T) plane. the full dependence on the/o parameters.

(iv) The bridge functions that we have obtained in this
way are fed into the closure relatid®0) and we restart at
step(ii).

The numerical realization is based on an efficient algo- . ) ] ] o
rithm [34] implementing an algorithm proposed by Gillan to The whole bridge cycle is depicted in a flow chart in Fig. 1.
solve integral equations in liquid state physi@s]. In gen- In practice all results presented here have been obtained

eral, we start from the HNC solution, i.e., from the closure for ten bridge cyclegalthough in some cases a smaller num-
ber would have been sufficienfFurthermore, we found that

gij(r)y=exd — Bd;;(r)+h;;(r)—cj(r)]. (190  the full Lado criterion(16) leads to more reliable results than

has also been tested in this contribution. For the case of a H
reference system, E¢16) becomes

B. Numerical implementation
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FIG. 2. Schematic representation of the nonadditive HS systems investigated in this study. The three different figures correspond to three
differentc, values:(a) c;=0.1,(b) c,=0.25, andc) c;=0.4. Every symbol in thed, p*) plane represents one system, forming, along with
the corresponding; value, the triplet of ¢;,a,p*) necessary to characterize the system. Symbols denote the follo@inguccessful
convergence of the algorithn®), convergence of the algorithm, but with unphysical parameters for the reference systeomvergence
possible with numerical tricks; andg, no convergence possible.

(17). Also introducing the full dependence on both param- Our investigations of the structure of binary HS systems
etersd,; andd,, instead of using only one parametgfwith  follows closely a recent MC study86] of symmetric nonad-
fixed d;;/d,,) leads to improved results, even though fromditive hard spherejs.e., of a mixture of equally sized spheres
the mathematical or numerical point of view, the latter crite-d,,=d,, andd,,= 3(d;;+d,,) (1+ a)]. The systems are fur-
rion would provide a faster solution of the problem. thermore characterized by the concentratigrof species 1
and a reduced dimensionless dengity=p(c,d3,+c,d3,).
The packing fractiony is then given byyp=(7/6)p*. Char-
IIl. RESULTS acterizing the systems by triplets,(,«,p*), we have stud-
A. Comparison with computer simulations ied on the whole 25 mixtures; the parameters of 24 systems

The structure data obtained by our method have beeare depicted schematically in Fig. 2 for fixeg values in a
N " .
compared to simulation results. Both for HS and Coulombicpa"O ) plane. In addition, we have considered the system

S . . ' éO.S, 0.5, 0.15 As indicated in the caption of Fig. 2, these
ystems we took data from the literature: in the first case w . . . .
used the extensive study @fonadditive hard spheres per- graphs give also some mformqﬂon about the quqllty of.the
formed recently by means of Monte CaxblC) simulation resqlts as such and in comparison to computer simulations.
by Junget al.[36,37, while the MC results for the Coulom- In Fig. 3_ we have depicted the PDFs of four selected systems
bic system stem from DeWitt al. [38]. For details about 2/0ng with MC datd36].
those simulations we refer the readers to the respective pub- At the practical application of our proposed method we
lications. were faced in principle with two problems:) whether the

For the LJ mixtures and the binary metallic alloys our limits of the numerical stability of the algorithm correspond
data were complemented by results obtained from standarf@ the limits of stability of the system investigate@;) for
microcanonical molecular-dynamid1D) simulations; the several systems, convergence of the algoritiaith reason-
equations of motion are integrated with a fourth-order Geasble results for the PDFs and good agreement with simula-
“predictor-corrector” algorithm. The ensemble size was, intion data was obtained, however, with unphysical param-
all cases, chosen to be 4000 particles; results represent esiers of the reference system. The phase diagram of
semble averages over 20 000 time steps. Details about thnadditive hard spheres was investigated thoroughly and in
simulations used in the inversion problem are given in Secprinciple we knew about the phase limits from those previ-
1 B. ous investigation$6,36,37,42, however, the exact limits of
stability are very sensitive to the numerical method used. In
general, we found that convergence was rather difficult to

The most simple binary model systems are mixtures obbtain as we approached the phase stability regime predicted
hard spheres. The fact that the analytic PY solution predictby one or the other method. Among the 25 systems treated in
[39] that no phase separation is possible within this framethis study and chosen more or less at randomFig. 2), for
work has made those systems less attractive over a long penly three mixtures no convergence could be obtained at all.
riod. Only recently, studiege.g., by means of very accurate As can be seen in Fig. 3, these systems are all close to the
integral-equation techniques and simulatjohave revealed, phase separating region. For three of the systems numerical
despite the simplicity of the interatomic potential, a largeconvergence could be obtained; however, the reference sys-
variety of phase separating behavior of both additive andem parameters were unphysical. Again, those systems were
nonadditive hard spheres. In particular, during the past sewlose to the stability region. For all other systefns., the
eral years special interest has been devoted to interestiigrge majority we found results that gave very satisfactory
phenomena encountered, e.g., in additive but highly asymagreement with simulation datéor a few cases additional
metric mixtures [8,40] or nonadditive mixtures(see numerical tricks had to be applied to guarantee conver-
[6,36,37,41,42and references cited thergin gence.

1. Hard spheres



5396 KAHL, BILDSTEIN, AND ROSENFELD 54

9ir)

(a) (c)

(S
(3]

11
11 :

~
w
-
=
a
-
~
o~
-
<
a
-~

(d)

22

T T T T T T

(b)
\___‘ 1 S

0 1 1 + I + 1 U' 1 + 1 + 1 + ]
[ 2 3 rfa 4 ! 1 3 r/a

T T T T T

-

FIG. 3. Partial PDFg;;(r) (as labeleglas functions of for binary symmetric nonadditive HS systems considered in our study for the
following (c,a,p*) triplets as functions of/a (a®=[(3/4w)(1/p*)]): (8 (0.1,-0.2,0.9, (b) (0.4,-0.5,0.9, (c) (0.4, 0.4, 0.2, and (d)
(0.5, 0.5, 0.1% Symbols denote the following>, MC results[36]; line, present study.

In the following we try to summarize the influence of the  Figure 3 shows the PDFs obtained by our method in com-
three system parameters, o, andp* on the quality of our  parison with MC datd36] for four selected systems: Fig.
results. The most critical parameter turned out to be the der(@) displays results for a system where convergence was
sity p*: a high density leads, in general, to a slow conver-very slow, while the slow decay of the PDFs as functions of
gence, unsatisfactory results, or sometimes even to no co#f€ distance in Fig. 3(d) indicates a near phase transition.
vergence at all. In addition, an influence of the concentration
can be observed: if we follow, e.g., the sequence of systems
defined by €¢,,0.4,0.2) withc;=0.1, 0.25, and 0.4, then we In Fig. 4 we present results of the PDFs that we have
see that for the first two systems no convergence could bealculated for a binary ionic mixture, i.e., of a system of
obtained, while we found very good agreement for thepointions in a uniform neutralizing background in compari-
c,=0.4 casdsee also Fig. @)]. From this we can conclude Son with MC data[38]. We consider several such systems
that a strong nonadditivity can be compensated more easiiyhere the charges are given By=1 andZ,=5 and a pa-

. . S : _ 1>5/33 _ a2
for a more equilibrated concentration distribution of the par-rameterl’;, with T'y=T'Zy"Y/(c1Z; +¢,Z,). I'=e/(akgT)
ticles in the mixture: in general, one observes better results the usual coupling parameter aadis the Wigner-Seitz
for those cases where the differences in the concentratiof@dius (1p=4ma%3). Agreement is very satisfactory; this
are not too large. Finally, nonadditivity as sughit does not ~ @lso holds for thereduced dimensionlespotential energy
reach extreme valupsurns out to be no crucial parameter U* =U/NkgT, which we have compiled, along with the pa-
for the convergence of the algorithm. Finally, we want torameters of the systems investigated, in Table I.
note that we could not find correlations between the packing
fraction of the reference system and the effective pack-
ing fraction of the nonadditive HS syste(defined, e.g., as The most simplgcontinuou$ model systems with an at-
Nerr=(16)p*[1+ (1+ )3]; cf. [43)]). tractive potential tail are LJ systems. We use the standard

2. Coulombic system

3. Lennard-Jones systems
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binary Coulombic system considered in our sty system pa-
rameters cf. the text and Tablg ®, MC results[38]; line, present
study.

parametrization(with the distance parametets; and the
potential paramete@’j =gij /kgT) and the usual expressions
for the interatomic potentials

i) (i)’

r r '

The parameters;; ande;;, i,j=1,2, of the systems in-

D (r)=BDj(r)=4s; (21

vestigated in this study have been taken from an Ar-Kr mix-

ture used in a MC studf44] and reused recently in an ap-
plication of a binary RHNC versionf5]. Based on this

(additive model system we have introduced nonadditivity

both with respect to distance and energy via

8ij:§\/8ii8jj' (22)

oj=3 (gt o)(l+a),
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TABLE II. Parameters of the LJ systent&r-Kr mixture with
parameters taken frofi@4]) investigated in this study. For all sys-
tems the following parameters have been chogen:0.01834 A
~3, T=115.8 K, andca,=Cy,=0.5; 0o, =3.405 A, 0(,=3.633 A,
en=1.0345, and:k,=1.442. The Ar-Kr parameters are defined via
TArkr= %(O'Ar'i' o) (1+a@) and ep k= E(earekr) Y2 For systems
marked byO or @ no numerical problems were encountered and
agreement with MD data was very satisfactqof. the text and
figureg; @ indicates those systems for which the PDFs are depicted
in Fig. 5. For systems marked by no numerical convergence of
the procedure could be obtained and for the system markedl by
numerical convergence was obtained, but agreement with simula-
tion data was found to be unsatisfactory. The last line lists the
packing fractionz of the HS reference systefthe values depend
only weakly on¢).

a
-0.20 -0.15 -0.10 -0.05 0.0 0.0 0.10
09| X O O O [ O X
1.0] X O O O O O X
11 + () O O O O [ J
7=0.28 »=0.28 »=0.34 =0.39 =0.43 »=0.45 =0.46

obtained very satisfactory agreement with MD data. Among
all these systems considered in this study we have chosen a
few with a high degree of nonadditivity and have depicted
them in Fig. 5: Fig. 58) shows the perfect agreement that is
encountered for most of the systems investigated. This pecu-
liar system is characterized by thé, &) pair (0.9, 0.0, i.e.,

the mixture is additive with respect to the distances and non-
additive with respect to the potential depth. Figurés and

5(c) show results for the systemd.1l, —0.15) and(1.1,
0.10, i.e., for rather strongly nonadditive mixtures. Even
though slight differences between the numerical and the
simulation data are observed, these figures demonstrate, nev-

The parameters and¢ used in this study are compiled in €rtheless, the wide applicability of our proposed method: for
Table II. As explained in the caption, the table also containdhe first system, the characteristic wigglegjin(r) around 7

information where problemé&oncerning either the numeri-

are reproduced very nicely and for the other system we

cal convergence or discrepancies with computer simulatiogtill obtain very good agreement even though the peak

datg were encountere(tf. also discussion below

heights of the three partial PDFs have become already rather

Except for the systems characterized by large nonadditivtigh, i.e., the system is quite dense.

ity parameters¢=—0.2 or+0.1 and/or¢ = 0.9 or 1.2, we

TABLE |. Parameters for the binary Coulombic systems consid-

4. Binary alloys
As a final class of model systems we have chosen binary

ered in this study and results for the reduced dimensionless pOte%ﬂloyS which. in contrast to LJ mixtures. are characterized

tial energyU* =U/(NkgT) in comparison with simulatiofMC)
and HNC results.y is the packing fraction of the HS reference
system.

a U*

Z, Z, Ty ¢ MC Ufine 7

1 5 10 0.05 —14.02753 —14.0081 —13.929 0.292
+ 0.00015

1 5 10 0.10 —20.05840 —20.0301 —19.926 0.330
+ 0.00017

1 5 10 0.20 —32.12399 —32.0974 —-31.924 0.382
+ 0.00023

1 5 10 0.50 —-68.33913 —68.3609 —67.940 0.451
+ 0.00032

8Referencd 38].

by long-rangedattractive oscillating pair potentials. For sim-
plicity we have chosen in this study a binary alkali alloy
K.Cs,_., varyingc over the entire concentration range and
considering three different temperatures. This system has
been object to a previous experimeri#h] and therefore, as
one of the rare binary systems for which extensive neutron-
scattering experiments have been performed, to several theo-
retical investigations[4,46,47. Similar integral-equation
studies have been performed on other alkali all@\&. The
interatomic potentials are based on pseudopotential theory,
using a simple Ashcroft “empty-core” pseudopoten{idf]

and the Ichimaru-Utsumi parametrization for the exchange-
correlation correction$50]. The logarithmic singularity in
the Lindhard function is known to be responsible for the
long-ranged oscillations in the potentids1]. The number
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gi(r)
L (b)

22

11

=)
N

FIG. 5. Partial PDFg);;(r) (as labeleflas functions of (in angstromsfor the three LJ system@r-Kr) considered in our studgfor
system parameters cf. the caption of Tablewith the following (£,«) parameters{a) (0.9,0.0, (b) (1.1,-0.15), and(c) (1.1,0.10.
Symbols denote the followingD, MD data; lines, present study.

densities of the systems have been taken fib#j; the other  be fulfilled and led, in comparison to simulation data, to a net
parameters characterizing the model for the systems are corimprovement over simple, unparametrized integral-equation
piled in Table Ill. We have compared data obtained by ourapproaches, such as the SMSA or the HNC approximation.
proposed method with MD results and HMSA dg#&] [i.e., In Fig. 6 we present results obtained by the method pre-
a parametrized integral-equation method, with a closure insented here and compare them with simulation results. Since
terpolating between HNC and soft MSEEMSA)]; in the  for all systems agreement turned out to be very satisfactory
latter case thermodynamic self-consistency was obtained bfy.e., within numerical accuragyve restrict ourselves to two
means of one adjustable mixing parameter and requiringypical examples, which are marked in Table Ill. In contrast
equality for the compressibility obtained via the virial and to the HMSA integral-equation approach, we were able to
the compressibility route. In the previous HMSA study onobtain with our method self-consistency falt systems, i.e.,
this systerm{4] it was found that for lower temperaturés even for low temperatures. In a direct comparison at higher
our case, at 373 Kself-consistency could not be obtained for temperatures, differences between the thermodynamically
the allowed range of the mixing parameter; however, forself-consistent HMSA data and the present results turn out to
higher temperatures equality between the two routes coulte very small.
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TABLE Ill. System parameters of the JCs; _. alloys investi- gilr)
gated in this study. The core radiji of the Ashcroft “empty-core” i
pseudopotential are chosen to be=1.2012 A (K) and b

r.=1.4393 A(C9 [51]; the listed number densities are obtained |
from data in[52] by linear interpolation of the atomic volumes.is
the packing fraction of the HS reference system. Systems marked

by * are depicted in Fig. 6.
22

Ck T (K) p (A73) n

0.2 373 0.00876 0.45

0.4 373 0.00949 0.45 b
0.6 373 0.01034 0.45

0.7 373 0.01083 0.45 2

0.8* 373 0.01137 0.45

0.4* 773 0.00833 0.32 1
0.7 973 0.00889 0.28

N N Y I N
T

5. Bridge functions @ 0 e r
Similar to a previous study on the one-component case gii(r)
[10], we have also studied the dependence of the bridge 5L

functions obtained from our method. They are displayed in a
logarithmic plot in Fig. 7 for two binary ionic mixturd$-ig.

7(a)] and for two metallic alloygFig. 7(b)]; for the LJ sys-
tems we obtain results similar to those for the binary alloys.
The crucial parameter to characterize the behavior is the
packing fractionn of the reference system; for the cases
displayed in Fig. 7 the corresponding values are indicated in
the caption. We also note, despite simikawvalues, charac-
teristic differences in the range of the bridge functions be-
tween ionic and strongly repulsive systems: while in the first
case theb;;(r) decay rapidly as functions of, the oscilla-
tions of the bridge functions of the binary alloys extend over
a larger range(the distance is measured in Wigner-Seitz
unitsa). In both cases the decay turns out to be faster as the |
packing fraction decreases. We also note the characteristic
oscillations that are already observed from 2a onward,; (b) OU
they are similar to the oscillations encountered for the PDFs

where they are caused by the distribution of the poles of the

Laplace transform of the PDFs. This has been observed by FIG. 6. Partial PDFgy;;(r) (as labeleyl as functions ofr (in
Martynov [54] and discussed in detail by Evans and co-angstroms for two K Cs;_. alloys considered in our studya)

workers[55] (for the binary case see al§b6]). ¢=0.8 andT=373 K and(b) c=0.4 andT=773 K; for further
parameters cf. Table Ill. Symbols denote the followiig; MD

data; lines, present study.

22
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5 10 15 r

B. Application: The binary inversion problem
A few years ago, Levesquet al. [22,23 proposed an

iterative procedure for the solution of the “inversion prob- atomic potential and the inversion problem is h_enc_e very
lem” of classical liquid state theory, i.e., the determinationdifficult to solve accurately. Although the generalization of
of an effective pair interaction from the pair structure. Initial the formalism to the binary case is straightforward, its real-
attempts to solve this problem date back to the 1ga@ ization is by no means trivial and even fails in some cases: in
and were followed by several other attempl®,21 that & recent study it was showi25] that for the case of small
either failed in parts of the phase space or were not generdfinority concentrations the statistical errors in the computer
enough to be applied to any liquid. Also attempts to obtainsimulation step accumulate and do not lead to satisfactory
the pair interaction by fitting a parametrized potential viaresults. Furthermore, the required “extension” of the simu-
computer simulation to experimental structure data should bkation data over a largerrange also bears some arbitrariness
mentioned herd17]. In contrast to all these attempts the in itself. To overcome the problem of small concentrations
method proposed by Levesque and co-workers overcomes alle would require larger ensembles, which, despite the com-
these drawback&at least in the one-component casecan  putational power of present-day workstations, soon brings us
be applied to any simple liquid and gives reliable resultsto natural limits. On the other hand, smoothing of the simu-
even near the triple point, i.e., in a region of the phase dialation data leads to a biasifg6] of the results and therefore
gram, where the structure is not too sensitive to the interhot to very satisfactory results either.
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FIG. 7. Infb;(r)] vsr/a (a being the Wigner-Seitz radiusor four different systemsgl1, full line; 12, dotted line; and 22, broken line
7 is the packing fraction of the HS reference system taken from the respective t@bl&nary ionic mixtures as characterized by
parameters of Table I: tom,= 0.5 and=0.451; bottomgc,=0.05 andn=0.292.(b) Binary alloys(for system parameters cf. Table)ll|
top, T=373 K, cx=0.2, andn=0.45; bottom,T=973 K, cx=0.7, and»=0.28.

Since we have shown in Sec. lIl A that our approach pro-q;!j(r)=<1>!<j‘1(r)+In[g}‘j‘l(r)/gﬁx"'(r)]+c!‘j‘1(r)—cﬁ-x"‘(r)
posed here is able to yield results as accurate as computer 1
simulations, we have replaced the simulation step in the in- —gf () +g7®(r). (23
version scheme by our method and checked the reliability of
the results. The predictor-corrector inversion scheme workﬁ0
as follows. We are given a set of “experimental” structure
data{g11(r),g2x(r),912(r)}=g°=g®"" from which we can

The sequence of th® should tend toward®®. As men-
ned above, the crucial point in the binary case is the cor-
rector step, i.e., the simulation step. In this work we have

. . . ) . replaced this simulation by our integral-equation method,
also calculate, via the Ornstein-Zemike equations, the dlre%here small concentrations do not affect the reliability of the

correlation functionsc®=c®" we assume that these func- results.

tloons are “produced” by the set of interatomic potentials v have investigated several systems and present results
®~, which are still unknown and which we want to deter- 5, three of them A, B, andC). They are again Ar-Kr mix-
mine in this procedure. In practical applicatio@s, e.g., in  tyres characterized by LJ potentidts. (21)]: their system

[24]) the ¢° are known from experimental scattering data; parameters are compiled in Table IV. In particular, systems
here, where we would like to test the reliability of our

method, these data have been produced in a computer experi- TABLE IV. Potential parameters;; and oy; (ij=1,2) of the
ment using the pair interactionB®. From go we determine, three LJ systems investigated«C) in the inversion sectiorc, is
e.g., via some liquid state theotY or MHNC approxima- the concentration of species 1. The mass of ata®) 1s that of Ar
tion), a set of interaction®?, i.e., a predictofor first guess ~ (Xe). i.e., 6.682 10" **kg (2.180<10 **kg) and the mass density
for ®°. The subsequeritorrectoy step is a computer simu- is for _aII sys_tems 1874 kg . N is the number of particles in the
lation (replaced in this work by our methpgerformed fora MP Simulation.

system characterized 8!, yielding the PDFgt. Using the
universality hypothesis of the bridge functiofi] one can
now construct a new predictdp? for ®° and thus ends up in A 0.4278 0.6278 0.8278 0.873 0.936 5/8 4000
an iterative formalism that enables us to calculate the poten- B 0.4278 0.6278 0.8278 0.873 0.936 1/10 6912

tials @ from the®*~?, i.e., the potentials of the preceding ¢  0.4278 0.6278 0.8278 0.873 0936 1/20 16384
step:

System 81‘1 81(2 8;2 0'11/0'22 0'12/0'22 Cl N
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B and C have been chosen with small minority concentra-rector step introduces some additional statistical error,
tions (c;=0.1 andc,;=0.05) in an effort to demonstrate that which in the end do not cancel out but rather accumulate;
the present version of the inversion scheme yields reliabléhis results in a higher number of iteration stepe., 12
results even for such cases. The experimental data have bei@stead of 3—jtand statistical erroré.e., rapid oscillations
produced in standard MD simulation rufsee aboveover  €ven for intermediate concentratiofe. Figs. 1-3 in[25]).

20 000 time steps with the number of particles indicated in he crucial basis for a successful and rapid convergence of
Table IV. From this table one can also see that the number ¢he algorithm remaingin both casesaccurate and reliable
particles has been increased with decreasing minority corlMPut data of the structure.

centration in order to guarantee a high accuracy of the ex-

: 0
penmeptal data. Thg" have bgen ex.tended beyonq the cut- IV. CONCLUSION

off radius r. =405 of the simulations by two different

closure relations, i.ecﬂ-(r)=0 andcﬂ(r)=—,8<bﬂ(r). In this paper we have investigated an integral-equation

Note that for smooth daté.e., with little statistical noige ~ @PProach to determine the structure and thermodynamics of a
for the PDFs, the inversion problem is solvecbimeiteration ~ Pinary mixture of simple liquids. In this method the
within the approximation of universality of the bridge func- Omnstein-Zernike equations are solved along with a MHNC-

tional: inserting the experimentaf® into the bridge func- RHNC-type closure relation where the bridge functions are

tional, we get the bridge functions as functions of the refer—?alcmat.ed from ar(approximatg bridge functional, V‘.'h'Ch’
turn, is calculated from a model free-energy functional for

n rameters, which are then imiz he L . . .
ence .pa a e.ti S’h ¢ a.f.eu—te opt . ed byl t eh ad e reference system. The basic assumption of our method is
(I\a/lq:st'conls' Wit tdliﬁ sge0|t|e_ ‘i(zr) v_\|/<e julsttlemp oydt §t . the universality hypothesis at the level of the bridgac-

closure and the Lrnstein-zernike refations and obtaif, | (which is easily obtainable via functional derivative

the potentialsb;(r) from the expenmentajﬂ(r). APPYING  fom the free-energy functional In contrast to previous
this procedure to the;;(r)'s specified above reproduces \ Nc and RHNC calculationgwhere universality was as-
quite accurately the correct potentials in Figg)§denoted as sumed at the level of the briddanctions the bridge func-
®ji(r)]. The accuracy obtained by this procedure depends afons used here contaivia the functional the structure of
course on the accurady.e., in our case on the statistical poth the reference system and the system under consider-
erron of the PDFs; in this figure we have therefore displayedation. As a reference system we have chosen a mixture of
the results systenB with a minority concentration of 0.1. additive HS for which, as shown recently, an expression for
Despite the good results of this first guess we have demonhe excess free-energy functional based on fundamental geo-
strated the robustness of the method bgetiberatedistor-  metric properties of the individual spheres can be con-
tion (“by hand”) of the initial guess of the predictor- structed. This functional may be applied, in its most general
corrector scheme. case, to inhomogeneous liquids and reproduces in the homo-

The first guess for the potentiab! in the predictor- geneous case the expressions based on the analytic PY solu-
corrector scheme has been obtained by deliberately modifition and the scaled particle theory. As a result of the accu-
ing the original interactionsb® by hand. For simplicity we racy of the bridge functional and the universality hypothesis,
have assumed the sarde for all systems®° and®' are  a Lado-type criterion guarantees a high degree of thermody-
depicted in Fig. 83). By applying the inversion procedure namic self-consistency.
outlined above we create a sequencelf The results are The reliability and numerical accuracy of this method was
depicted in Figs. &)—-8(d) for systemsA—C. For the first tested for several model liquid$iS, binary Coulombic sys-
system we got a satisfactory solution after four steps. Theéems, LJ mixtures, and binary liquid alkali alloysver a vast
small oscillations observed in the potentials in the regiorrange of parameters; these parameters were also chosen so as
1.50,,—1.80,, are due to the size effects of the MD results; to create a strongly nonadditive system, with respect to both
they are much weaker in systeBy where a larger ensemble the distance and energy parameters. Numerical results were
has been considered. For syst@na satisfactory conver- compared with simulation datdonte Carlo and MD simu-
gence of the algorithm is observed after three steps. For syfationg taken either from literature or produced for this
tem C (characterized by the smallest minority concentrationwork. In general, agreement is very satisfactory, even for
c,=0.05, corresponding te-800 particles of type Jlwe  strongly nonadditive systems. Problems were encountered
obtained again satisfactory results after three iterations. Onlfor those parameter combinations where simulations and
near~ 1.80,, oscillations are visible that have to be attrib- other liquid state methods predict a near phase separation.
uted to the statistical errors in the simulation data forThe answer to the question how accurately our method is
011(r). In general, the results turn out to be rather insensitiveable to reproduce phase stability and phase diagrams must be
to the closure used for the extension of the experimentgbostponed to a later study. Our results demonstrate that,
data. However, a grid of at least 1024 points and of a meskvithin numerical accuracy, the present method based on uni-
size of 0.01(in Wigner-Seitz radiia) is recommendable to versality of the bridge functional is as accurate and reliable
obtain the displayed accuracy. as present day simulations.

The advantages of using the integral-equation approach In order to substantiate this “claim” in a practical appli-
instead of the simulation in the iterative procedure arecation we have replaced computer simulation by this ap-
quickly summarized: the present version is much faster sincproach in an algorithm to solve the classical inversion prob-
simulations for ensembles of 7000 particles even morg  lem in liquid state theory. The method chosen is an iterative
over several thousands of time steps are still very time conalgorithm proposed some years ago by Levesefual. and
suming. In addition, every simulatiofmepresenting the cor- represents at present the most reliable tool to solve this non-
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__FIG. 8. (a) Interatomic potential¢as labelegl ®° (initial potential, full line), ®* (first guess by deliberate distortion, broken Jinand
@ (first guess as described in the text, long-dashed lirsed in this contribution for the inversion scheme as functions of units
04,. (b) Comparison of the initial potential®® (full line) with the (convergedl ®* (broken ling for systemA [for labels cf.(a)]. (c)

Comparison of the initial potentiaf®® (full line) with the (converged ®® (broken ling for systemB [for labels cf.(a)]. (d) Comparison of
the initial potentials®® (full line) with the (convergedl ®° (broken ling for systemC [for labels seda)].

trivial problem. One iteration consists of a predictor and athe numerical point of view the algorithm turned out to be
corrector step, where, as proposed in the original work, theather robust and can, in principle, although with a consider-
corrector step is realized by a computer simulation. In thisable formal effortwhich might be achieved by use of formal
work we have replaced this simulation by our approximatdanguages, such asATHEMATICA ), be generalized to more-
method and find that it indeed can be used in this frameworikkcomponent systems.

and that the iterative algorithm converges in a very satisfac- On the basis of all those comparisons we may conclude
tory way. In addition, and in contrast to simulations, thethat by capturing the correct geometrical features, the
inversion scheme using our method in the corrector stefundamental-measure bridge functional leads to an accurate
gives reliable results for those system parameters wheréescription of all types of homogeneous simple liquid mix-
simulations fail, i.e., for small minority components. From tures of which the pair correlation functions can be grossly
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interpreted in terms of effective hard-core repulsions. Molten The convolution integrals are most readily performed in
salts and electrolytes, when they feature pair correlatiom space, where they reduce to products of the Fourier trans-
functions with very strong nonadditivity of the effective forms of the two functions involved. The Fourier transforms
spheres, cannot be expected to be similarly well representeaf the weight functiongdenoted by a tildeare given by

by the HS bridge functional and will be considered in a

separate work. 30(q)= sm(qR) _
I qR| I 1
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APPENDIX A: THE FREE-ENERGY FUNCTIONAL
The geometrically based fundamental measure functional ®?(q)= —1v—1q?o§3)(q),
takes the forn{7,8,19 _ o _
The Ri(y), vy=0, ...,3,describe characteristic geometric fea-
H tures of theindividual spheres
Faxlp]= f dr &{n(n)}, (A1) ) i )
RP=1, R?=47R?,
where ® is a function of a set of weighted densities (A5)
{n(r)}=(ng,nq, ....Nn,,...) related to the set of density e
profiles{p} via RY=R,, Rf3)=?Ri3.
n,(r)= f dr'pi(r')e!®(r—r'") (A2)  Furthermore, one finds for the limitg—0
_ _ o ima”(q)=R"”, lim®”(q)=0. (A6)
and the weight functionéw{*(r’)} are characteristic func- -0 -0

tions for the geometry of the particles. For a three-

dimensional sphere of radit® the set of weight functions is It is then obvious that in the uniform limit the scalar densities

n,(r) become

'@
0= (1), n(N—&=> pRY, 7=0,....3, (A7)
I
(D) — (2 ¢y — | (D) while the vector densities,(r) vanish in this limit. In par-
i (r) 477Riw (N =le™ ()], ticular, £&3= 7, the packing fraction.

One finds finally thatb{n(r)} is given by[7,8,15
2N =8R—Ir)=lw{? (1], . —
1112 2

(1-ng) 247 (1-ny)?

(A3) d{n(r)}=—ngIn(1—nz) +
0N =0 (R ~]r|), , _

1
oM(r)= ﬁw(z)(f) _ o _ o _
Again the first line contains the scalar contributions, while
the second line represents the vector contributions. It is pos-
(2)(ry — [5 R — sible to construct a “simplified” free-energy model with a
w?(r)= - 8(R=Ir) . . . . .
different set of entirelyscalar weight functiong57], requir-

. . . ~ing, however, the inclusion of derivatives of generalized
where the first four equations are the scalar weight functiongunctions. The equivalence of this simplified model and the
and the last two equations are the vector wave functions. lariginal (present one has been shown explicitly if58],
principle o)(r), (2)(r) and w{?(r) are sufficient to cal- where also a detailed comparison between both versions of

culate the full sef (™). the model is done.
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As already outlined in Sec. Il AEgs. (4) and (5)], & &6, 1 &
density-functional theory provides the possibility to calculate w®= et 2 + o =)
the direct correlation functions{™: [ p](ry, ... r,) via (1=&) (1-& m (16
the functional derivative of the excess free-energy functional 1 ¢
Fed p] with respect to the one-particle densitjg$r,). One x'V= , X<1):—22,
then obtains the general expressions (1-&5) (1-&)

(A14)
c™(ry, ... ) & 1 &
XP=——t o e
(1-&3)° 4w (1-¢&3)
P
— - 3
f dr“l 'E An _ﬂna1~ o anan {ngt=1{n,(N}] (r) X(3>— go + 25152 1 §2

162 (1-6)°  Am(1-&)"

Xw(l‘”)(rl—r)---w;"”)(rn—r) _
The factors of the,(” in (A12) now represent character-

P ] istic quantities of thepair exclusion volume of two spheres
- drﬁl E m = {nan) (r) with radii R; andR; at a distance from each othefe.g.,
ot e e AVji(r) is the overlap volume andS;(r) is the overlap

X “’1 P(r =1y wi{gn)(fn—f), (A9)  surfacd. c(z)(r) in (35) is identical to the analytic expression

obtained by Lebowitz and Rowlinsof89] within the PY
approximation. The uniform fluid(® has been favorably

Mgy, ... 0n) compared with computer simulatioh80,61].
EY APPENDIX B: THE LADO CRITERION
N _al,Z_ an | Mg -ananL e Introducing a reference system, we can rewrite B as
na = (22

Fed P1=F2[po:pl+[FZ[po;p]—F2 " po;:pll, (B

where the term in bold square brackets represents the func-
P tional F{2 T p], which generates the bridge functional of
—} the reference syste®®T p,;g](r).
MNa,, (n)=1{£,} In the above equations the second-order functionals for
the system and the reference system can be calculatbe
—(a —(a bulk (due to the absence of the bridge functiofrem the
X‘”(l l>(ql)' : ~w§1 n)(qn) 5( Z qi:O), (A10) HNC(expression for the free-energy f?mctionall? ie.,

X3, () - ﬁ;‘*n)(qn)a( 2 qi=0)

_ _ _ o Felpol=F*Tpol+ Frncl o]~ Fiiidpol.-  (B2)
again separated into scalar and vectorial contributions.
In particular one obtains fon=1 andn=2 the expres- The explicit expressions for these functionals are given in
sions in the homogeneous cd$9,60 [62,63.
As demonstrated i[63], the PDFgy;;(r), obtained from a
HNC solution of the OZ equations for a given set of poten-
(r)— —(kgT) "~ M. o E w R, (A11) tials @;;(r), guarantee that the variation of the HNC func-
tional Fncl po] is given by

—ciP () =x AV (1) + xPAS;(r) + X PAR; (1) SF incl pol =5 - TZ cic; | drg;(r)a®;(r). (B3)

+x90[r—(R+R)]. (A12)
Since the bulk limit of the optimized free energy is the so-
o N (@) ) lution of HNC equations with the effective interactions
The coefficientsu;” and x'*’ are functions of the&, and are {(Deﬁ(r)+bref(r)} (for Fr! [po]) and{q)ij(r)+birjef(r)} (for

. ; HNC
explicitly given by FHNC[pO]) respectwely, we obtain
pO=—-In(1-&), M<1>=(152§3), F el pol =5 TE CCJ dr gi; (1) &bfF(gin),
(A13) (B4)
2
2— &1 1 & pref

KT g B (1) OF pincl pol= T TE cicj | drgff(n[s®{F(r)
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+5b_{jef(gr9f;r)]. (B5) Concluding on the basic assumption of our method that
the bridge functional is relatively insensitive to the actual
Relation(B3) holds, furthermore, for the variation of the shape of the input PDFs.e., 5bfef(g r)~ 5bfef(gfef r)], we
exact free-energy functional with respect to the variation infinally obtain
the ®j;(r), i.e.,

5F|'Ef[p0:|—2k Tz CC f dr gr“:‘f(r)ﬁcpirjef(r)- (BG) 5F[ O]_ 2k TE CC dr[g”(l’) gref(r)]5bref(g;r)_

Adding these three terms according(&i1) we obtain (B8)

SF chdr r 5b’ef T
[po]= 2kg Tz [9ij(r) obi(gir) The optimal choice of the reference system ma&E§p;]

stationary with respect to the variation of the reference sys-

gfff(f)(SbrEf(gref;r)- (B7)  tem parameters and leads to Etp).
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