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We investigate in detail a thermodynamically self-consistent method to calculate the thermodynamics and
structure of a binary mixture of simple liquids, introduced recently by one of us@Y. Rosenfeld, J. Chem. Phys.
98, 8126 ~1993!; Phys. Rev. Lett.72, 3831 ~1994!; J. Phys. Chem.99, 2857 ~1995!; Phys. Rev. E54, 2827
~1996!#. This approximation is based on the universality hypothesis of bridgefunctionalsand leads to a
modified hypernetted-chain-type closure to the Ornstein-Zernike equations. We employ the fundamental-
measure bridge functional of hard spheres. The bridge functions are calculated from this functional by inserting
the appropriate structure functions of the actual system and of a suitably chosen hard-sphere reference system.
An iterative procedure is repeated until numerical self-consistency is obtained. We demonstrate the reliability
and wide applicability of this method by comparing numerical results with computer simulation data for a large
variety of systems. Finally, we show for the example of the classical inversion problem of liquid state theory
that our method can indeed replace computer simulations in more complex procedures without loss of numeri-
cal accuracy.@S1063-651X~96!08911-8#

PACS number~s!: 64.70.Ja, 61.20.Ne, 61.25.Mv

I. INTRODUCTION

The development of liquid state theory during the past 30
years was characterized by a steady change in predominance
between different basic concepts for the determination of the
structure and thermodynamics~such as integral equations,
simulation methods, and perturbation theories; see, e.g.,@1#!.
By now, the one-component case seems to be settled: these
three groups of methods yield, at the respective highest level
of sophistication and efficiency, results for the structure and
thermodynamics that are equivalent within numerical accu-
racy @2#. However, the binary case is, from the conceptual
point of view, more complex and sometimes still leaves
problems unsettled; it therefore represents a stringent test for
a recently introduced liquid state theory. In recent years, a
diminishing interest in perturbation theories has been ob-
served, leaving thus integral equations and simulation tech-
niques as main concurrents. The problem of thermodynamic
inconsistency could not be coped with properly in integral-
equation approaches to the binary case. Thermodynamic in-
consistency is caused by the approximations done in the deri-
vation of the closure relation from exact thermodynamic
relations; as a consequence, different equations of state yield
different results for thermodynamic quantities. Simulation
techniques do not suffer from this drawback since they are,
by definition, thermodynamically self-consistent. During the
past years several attempts have been proposed for integral-
equation techniques to overcome this consistency problem
~such as, e.g.,@3–6#!. These approaches are mostly based on
generalizations of the one-component case, which, however,
brings along both conceptual problems~such as, for instance,
the restriction to additive reference systems! or numerical
problems~a simple equation in one variable now becomes a

highly nonlinear set of coupled equations in two or three
unknowns where, in addition, it is not always guaranteed that
a solution is found!.

An approach was introduced recently@7–10# that treats
one-component systems and mixtures on equal footing. It
starts from the Euler-Lagrange equations, which allow the
determination of the one-particle density of an inhomoge-
neous liquid~‘‘density-profile’’ equations! subject to an ex-
ternal field. From these equations we can derive a
hypernetted-chain~HNC! type equation for these densities;
in those equations the excess free-energy functionalFex en-
ters, which, via functional relations, is closely related to the
bridge functional. In previous applications of the modified
hypernetted chain~MHNC! or the reference hypernetted
chain ~RHNC! approximations~e.g., @11#! the unknown
bridge functions of a given system were replaced, based on
arguments provided by the universality hypothesis@12#, by
the bridge functions of a suitably chosen hard-sphere~HS!
reference system; these functions can be calculated easily
within the Percus-Yevick~PY! theory@13# or from the semi-
empirical parametrization due to Verlet and Weis@14#. The
method imposes universality at the level of the bridgefunc-
tional; similar to the bridgefunctionsof a HS system, this
functionalcan be calculated very easily for the general case
of inhomogeneous hard spheres~involving only fundamental
measures! @15# and specialized, as required for our case, to
homogeneous hard spheres. This fundamental-measure
bridge functional is given in terms of characteristic quantities
of the individual spheres and involves only integrations over
known functions. Furthermore, in this approach the free-
energy functional can be optimized by imposing the test-
particle ~or source-particle! self-consistency, which is real-
ized by the transition from an inhomogeneous system to a
homogeneous one if the source of the external potential be-
comes a particle of the liquid@16#. The Ornstein-Zernike
~OZ! equations are then solved for the structure functions of
the homogeneous system along with the closure relation
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where the bridge functions are calculated by means of the
abovefunctional, assuming that the universality hypothesis
is valid. The structure functions obtained are then fed into
the bridge functional, yielding an improved set of bridge
functions. This procedure is iterated until numerical self-
consistency is obtained in a sense that the structure functions
of the preceding step differ only marginally from the present
step.

The aim of the present paper is twofold. First, we would
like to demonstrate the reliability of this approach in direct
comparison with computer simulations for mixtures. The
systems chosen cover both standard model systems of liquid
state theory@HS systems, Coulombic systems, and Lennard-
Jones~LJ! mixtures#, as well as realistic mixtures, such as
binary metal alloys. In particular, attention has been paid to
test the reliability of the approach in ‘‘nonstandard’’ cases:
strongly nonadditive systems with respect to both distance
and potential depth. In general, we observe very good agree-
ment between our results and simulation data. Discrepancies
are encountered for extreme choices in nonadditivity, where
we reach either the limit of the numerical stability of the
algorithm or the limits of stability of the system considered.
The other aim of this paper is to show that our approximation
is in fact almost as accurate as computer experiment and is
therefore able to replace simulations in more complex algo-
rithms with only little loss in numerical accuracy. To this end
we have chosen the problem of inversion in classical liquid
state theory: there one tries to extract an effective interatomic
pair potential from a given pair structure. An accurate and
satisfactory solution of this problem is essential for the inter-
pretation of experimental scattering data@17#. Among others
@18–21#, a satisfactory approach has been proposed by
Levesqueet al. @22,23#. Their procedure is an iterative
predictor-corrector algorithm where the corrector step is rep-
resented by a computer simulation. Applications to realistic
systems~liquid Ga @24#! demonstrated the power of this ap-
proach. The method has been generalized to the binary case
@25#: it was found that there the method is as powerful as in
the one-component case for ‘‘standard systems.’’ The draw-
backs are rather caused by numerical inaccuracies in the cor-
rector~simulation! step, in particular, if the concentration of
the minority component is small~i.e., <5–10 %!: then the
statistical error of the simulation results~for typically 4000–
7000 particle ensembles! is too large and leads to an accu-
mulation of errors and, finally, to uncertainties of the results.
Smoothing procedures have turned out to bias the results and
hence fail as well@26#. In this paper we have therefore re-
placed in this inversion scheme the simulation step by our
method ~based on our demonstrated assumption that the
present integral-equation results are comparable in accuracy
to the computer simulations!. This replacement helps us to
avoid the above-mentioned problems for small minority con-
centrations to which integral equations are insensitive.

The paper is organized as follows. In Sec. II we briefly
present the basic concept of our approach and present the
necessary expressions for the determination of the structure
and thermodynamics. Sections II A and II B are concerned
with the numerical implementation of the algorithm. Section
III provides details about the reference simulations that we
have performed and contains a detailed comparison between
the results obtained by our density-functional method and

data of computer simulations; we furthermore demonstrate
by considering the inversion problem that our method can
indeed replace computer simulations without loss of numeri-
cal accuracy. The paper is concluded by a summary in Sec.
IV. Appendixes A and B contain all the necessary expres-
sions that are required to construct the bridge functional and
the derivation of the criterion for the reference system pa-
rameters.

II. THEORY

A. Basic concept

In an inhomogeneous liquid ofN components~and con-
centrationsci) where the particles interact via pair potentials
F i j (r ) and are subject to external potentials
ui(r ), i51, . . . ,N, the single-particle densities~or density
profiles! r5$r i(r ),i51, . . . ,N% are obtained from the
Euler-Lagrange equations, i.e., by minimizing the grand po-
tentialV@r# with respect to ther i(r ) @27#,

FdV@r#

dr i
G~r !50, i51, . . . ,N. ~1!

The grand potential is given by

V@r#5F id@r#1Fex@r#1(
i
E drr i~r !@ui~r !2m i #, ~2!

where the m i are the chemical potentials and
r05$r i5rci ,i51, . . . ,N% denotes the bulk densities~num-
ber densities!; r is the total~homogeneous! number density.

While the ideal contributionF id@r# in Eq. ~2! can be
given by the exact relation

F id@r#5kBT(
i
E drr i~r !$ ln@r i~r !l i #21% ~3!

~thel i are the de Broglie wavelengths!, the crucial quantity
within this framework remains the excess part of the free
energyFex@r#, which stems from the interaction of the par-
ticles. A hierarchy of the direct correlation functions
c1, . . . ,n
(n),FD @r#(r1 , . . . ,rn) is derived fromFex@r# via functional
derivatives~FD! with respect to the one-particle densities:

kBTci
~1!,FD@r#~r1!52m i ,ex@r#~r1!52FdFex@r#

dr i
G~r1!, ~4!

kBTci j
~2!,FD@r#~r1 ,r2!52Fd2Fex@r#

dr idr j
G~r1 ,r2!. ~5!

The m i ,ex are the excess chemical potential functionals and
kB is the Boltzmann constant. We start from a~formally
exact! functional Taylor expansion ofFex@r# around the uni-
form fluid limit in terms of theDr i(r )5@r i(r )2r i ,0#:

Fex@r#5Fex
~2!@r0 ;r#1Fex

B @r0 ;r#. ~6!
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Fex
(2)@r0; r] is given by

Fex
~2!@r0 ;r#5Fex@r0#1(

i
m i ,ex@r0#E dr Dr i~r !

2
kBT

2 (
i , j

E E dr dr 8ci j
~2!,FD@r0#~ ur2r 8u!

3Dr i~r !Dr j~r 8!. ~7!

ci j
(2),FD@r0#(ur2r 8u) is the direct correlation function of the
homogeneous~bulk! system. In the above Taylor expansion
the exact terms up to order 2 are subsumed inFex

(2)@r# and
the subsequent termFex

B @r# contains all contributions of or-
der three and higher. It is related to the bridge functional
Bi@r0 ;r#(r ) via

Bi@r0 ;r#~r !5
1

kBT
FdFex

B @r0 ;r#

dr i
G~r !. ~8!

It can now be shown for a fluid in contact with a reservoir
bulk fluid of densityr0 that Eq.~1!, which determines the
density profiles, can be cast in the~HNC type! form @7–10#

ln@gi~r !#52
1

kBT
ui~r !1Bi@r0 ;r#~r !

1(
j

r j ,0E dr 8ci j
~2!,FD@r0#~ ur2r 8u!@gj~r 8!21#,

~9!

introducinggi(r )5r i(r )/r i ,0; the bridge functional~8! turns
out to be given by

Bi@r0 ;r#~r !5
1

kBT
$m i ,ex@r#~r !2m i ,ex@r0#%

1(
j

r j ,0E dr 8ci j
~2!,FD@r0#~ ur2r 8u!

3@gj~r 8!21#. ~10!

Following an old idea of Percus@16#, we recover within
this formalism the properties of thehomogeneousliquid
from the inhomogeneousliquid by interpreting the source of
the external fields@ui(r )# as a particle (t) of the liquid itself,
situated at the origin and interacting with the other particles
via ui(r )5F t i(r ); the formalism is called the source or test
particle method and will help us in the following to describe
the properties of the homogeneous system. Thegi(r ) intro-
duced above now become the pair distribution functions
~PDFs! gti(r ) and the density-profile equations~9! reduce to

ln@gti~r !#52
1

kBT
F t i~r !1b̄ti~r !

1(
j

r j ,0E dr 8cji
~2!,FD~ ur2r 8u!

3ht j~r 8!. ~11!

hti(r )@5gti(r )21# and the b̄ti(r ) stand for the symme-
trized bridge functions

b̄ti~r !5
cibti~r !1ctbit~r !

ct1ci
, ~12!

which have to be introduced in this form in order to preserve
symmetry in the indices@ b̄ti(r )5b̄it(r )# in this generaliza-
tion of the test particle formalism to the binary case.

For a givenFex@r# the density-profile~DP! equations~9!
and ~10! can now be solved and yield the PDFsgi j

DP(r ). On
the other hand, the direct correlation functionsci j

(2),FD(r )
@obtained via functional derivative fromFex@r# via ~5!# ful-
fill, along with the PDFsgi j

OZ(r ), the Ornstein-Zernike rela-
tions

hti
OZ~r !5cti

~2!,FD~r !1(
j

r j ,0E dr 8cji
~2!,FD~ ur2r 8u!ht j

OZ~r 8!.

~13!

Up to now no approximations have been made.
If we were to know theexact Fex@r# then the two sets of

PDFs~labeled OZ and DP! would be equal~i.e., consistent!;
this consistency is referred to as the test particle self-
consistency. However, since for realistic applications ap-
proximations have to be admitted to construct the functional
of the excess free energy, this consistency will, in general, be
violated, i.e., thegi j

DP(r ) will differ from the gi j
OZ(r ). Never-

theless, given some model for the bridge functional~and
hence forFex@r#), this functional can be optimized by im-
posing self-consistency, i.e., by requiring that Eqs.~11! and
~13! are fulfilled.

Several years ago the universality hypothesis of the bridge
functions@12# introduced a breakthrough in the actual imple-
mentation of the MHNC and RHNC methods: this hypoth-
esis ‘‘allows’’ the bridge functions of a given system to be
replaced, within a good accuracy, by the bridge functions of
a suitably chosen HS reference system. In the present method
this hypothesis is generalized to the level offunctionals: to
this end the contributionFex

(B)@r# in ~6! is replaced by a func-
tional Fex

(B),ref@r# of a suitably chosen reference system,
which generates the bridge functional of the reference sys-
tem,Bi

ref@r0 ;g#(r ), similar to ~8! and

bti~r !5Bi
ref@r0 ;g#~r !, ~14!

whereg stands for the set of PDFsgti(r ). Similar to ~10!,
Bi
ref@r0 ;g#(r ) is found to be given by@7–10#

Bi
ref@r0 ;g#~r !5

1

kBT
$m i ,ex

ref @r#~r !2m i ,ex
ref @r0#%

1(
j

r j ,0E dr 8ci j
~2!,FD, ref@r0#~ ur2r 8u!

3@gj~r 8!21#. ~15!

Note thatBi
ref@r0 ;g#(r ) also contains the structure functions

gti(r ) of the considered system.
Two questions now remain open:~i! what reference sys-

tem is chosen to provide the reference bridge functional and
~ii ! how do we determine the parameters of this reference
system? The most natural choice for a reference system in
liquid state theories for simple liquids are hard spheres~see,
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e.g., Refs.@1,28# and other papers cited therein!. In addition,
as it has been shown recently by one of us@15#, it is possible
to construct an excess free-energy functionalFex

HS@r# @and
henceBi

HS@r0 ;g#(r )# for a binary system of additive HS
compatible with the analytic PY solution of the OZ equations
@29#. ~There are indications that also for other model systems
for which analytic solutions exist in liquid state theory, such
as HS Yukawa systems, such a functional might be con-
structed, however, with a much larger formal effort@30,31#!.
This HS free-energy functional will be used as the reference
free-energy functionalFex

ref@r#. Details about the construction
of this functional and the resulting expressions for the bridge
functionalBi

ref@r0 ;g#(r ) are given in@7,8,15# ~see also Ap-
pendix A!. The second question of how the parameters of
this reference system are determined can be answered fol-
lowing similar lines as in the MHNC-RHNC approxima-
tions: for the bridgefunctionbased methods, Lado@11,32,33#
has derived criteria for the determination of the packing frac-
tion of the HS reference system. As outlined in more detail
in Appendix B, we can generalize these criteria to our bridge
functional based method and arrive at the following equa-
tions, which fix the parameters of the reference system:

(
i , j

r i ,0r j ,0E dr @gi j ~r !2gi j
ref~r !#db̄i j

ref~g;r !50. ~16!

A similar and more easy to handle, though less accurate,
criterion

(
i , j

r i ,0r j ,0E dr @gi j ~r !2gi j
ref~r !#b̄i j

ref~g;r !50 ~17!

has also been tested in this contribution. For the case of a HS
reference system, Eq.~16! becomes

(
i , j

r i ,0r j ,0E dr @gi j ~r !2gi j
ref~r !#

]b̄i j
ref~g;r !

]dkk
50, k51,2,

~18!

i.e., a set of two coupled nonlinear equations in two variables
(d11 andd22).

Once the above problem has been solved it is easy to
extract all further structural information. We can therefore
now proceed to the determination of the thermodynamic
properties. Pressure and internal energy follow from the stan-
dard relations@1#. Like in the implementation of the univer-
sality of the bridge functions, we can replace the Lado crite-
rion by choosing the reference parameters such that
thermodynamic consistencyis obeyed. But this does not al-
low the local determination of the free energy and chemical
potentials, which have to be obtained by integration along a
thermodynamic pathafter solving the integral equations for
the set of points in the (r,T) plane.

B. Numerical implementation

The numerical realization is based on an efficient algo-
rithm @34# implementing an algorithm proposed by Gillan to
solve integral equations in liquid state physics@35#. In gen-
eral, we start from the HNC solution, i.e., from the closure

gi j ~r !5exp@2bF i j ~r !1hi j ~r !2ci j ~r !#. ~19!

This solution is the starting point of an iterative process.

~i! The structure functionsgi j
HNC(r )5gi j

[0] (r ) ~and the
other correlation functions! are fed into the bridge functional
~15! yielding the bridge functionsbti(r ) via ~14!; for the HS
reference system some set of diametersd11 and d22 is as-
sumed~actually, in a first guess, we pick some value for the
packing fractionh and the ratio of the diameters is fixed to
some value characteristic for the system as, e.g., the posi-
tions of the minima in the potentials!.

~ii ! The OZ equations are solved along with the closure
relations

gi j ~r !5exp@2bF i j ~r !1hi j ~r !2ci j ~r !1b̄i j ~r !#, ~20!

with the bridge functions taken from~14!.
~iii ! The expressions in~16! @or ~17!# are evaluated for a

given set of parametersd11 and d22: if the set of coupled
equations are fulfilled then we proceed with the next step
~iv!; if the equations are not fulfilled, then the parameters are
modified and we go back to the preceding step~ii !; again this
loop is realized in a first, coarse search forh and assuming a
fixed ratio of diameters. In a refinement step we introduce
the full dependence on thetwo parameters.

~iv! The bridge functions that we have obtained in this
way are fed into the closure relation~20! and we restart at
step~ii !.

The whole bridge cycle is depicted in a flow chart in Fig. 1.
In practice all results presented here have been obtained

for ten bridge cycles~although in some cases a smaller num-
ber would have been sufficient!. Furthermore, we found that
the full Lado criterion~16! leads to more reliable results than

FIG. 1. Flow chart of the numerical implementation of the pro-
posed algorithm.
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~17!. Also introducing the full dependence on both param-
etersd11 andd22 instead of using only one parameterh ~with
fixed d11/d22) leads to improved results, even though from
the mathematical or numerical point of view, the latter crite-
rion would provide a faster solution of the problem.

III. RESULTS

A. Comparison with computer simulations

The structure data obtained by our method have been
compared to simulation results. Both for HS and Coulombic
systems we took data from the literature: in the first case we
used the extensive study of~nonadditive! hard spheres per-
formed recently by means of Monte Carlo~MC! simulation
by Junget al. @36,37#, while the MC results for the Coulom-
bic system stem from DeWittet al. @38#. For details about
those simulations we refer the readers to the respective pub-
lications.

For the LJ mixtures and the binary metallic alloys our
data were complemented by results obtained from standard
microcanonical molecular-dynamics~MD! simulations; the
equations of motion are integrated with a fourth-order Gear
‘‘predictor-corrector’’ algorithm. The ensemble size was, in
all cases, chosen to be 4000 particles; results represent en-
semble averages over 20 000 time steps. Details about the
simulations used in the inversion problem are given in Sec.
III B.

1. Hard spheres

The most simple binary model systems are mixtures of
hard spheres. The fact that the analytic PY solution predicts
@39# that no phase separation is possible within this frame-
work has made those systems less attractive over a long pe-
riod. Only recently, studies~e.g., by means of very accurate
integral-equation techniques and simulations! have revealed,
despite the simplicity of the interatomic potential, a large
variety of phase separating behavior of both additive and
nonadditive hard spheres. In particular, during the past sev-
eral years special interest has been devoted to interesting
phenomena encountered, e.g., in additive but highly asym-
metric mixtures @8,40# or nonadditive mixtures ~see
@6,36,37,41,42# and references cited therein!.

Our investigations of the structure of binary HS systems
follows closely a recent MC study@36# of symmetric nonad-
ditive hard spheres@i.e., of a mixture of equally sized spheres
d115d22 andd125

1
2(d111d22)(11a)#. The systems are fur-

thermore characterized by the concentrationc1 of species 1
and a reduced dimensionless densityr*5r(c1d11

3 1c2d22
3 ).

The packing fractionh is then given byh5(p/6)r* . Char-
acterizing the systems by triplets (c1 ,a,r* ), we have stud-
ied on the whole 25 mixtures; the parameters of 24 systems
are depicted schematically in Fig. 2 for fixedc1 values in a
(a,r* ) plane. In addition, we have considered the system
~0.5, 0.5, 0.15!. As indicated in the caption of Fig. 2, these
graphs give also some information about the quality of the
results as such and in comparison to computer simulations.
In Fig. 3 we have depicted the PDFs of four selected systems
along with MC data@36#.

At the practical application of our proposed method we
were faced in principle with two problems:~i! whether the
limits of the numerical stability of the algorithm correspond
to the limits of stability of the system investigated;~ii ! for
several systems, convergence of the algorithm~with reason-
able results for the PDFs and good agreement with simula-
tion data! was obtained, however, with unphysical param-
eters of the reference system. The phase diagram of
nonadditive hard spheres was investigated thoroughly and in
principle we knew about the phase limits from those previ-
ous investigations@6,36,37,42#; however, the exact limits of
stability are very sensitive to the numerical method used. In
general, we found that convergence was rather difficult to
obtain as we approached the phase stability regime predicted
by one or the other method. Among the 25 systems treated in
this study and chosen more or less at random~cf. Fig. 2!, for
only three mixtures no convergence could be obtained at all.
As can be seen in Fig. 3, these systems are all close to the
phase separating region. For three of the systems numerical
convergence could be obtained; however, the reference sys-
tem parameters were unphysical. Again, those systems were
close to the stability region. For all other systems~i.e., the
large majority! we found results that gave very satisfactory
agreement with simulation data~for a few cases additional
numerical tricks had to be applied to guarantee conver-
gence!.

FIG. 2. Schematic representation of the nonadditive HS systems investigated in this study. The three different figures correspond to three
differentc1 values:~a! c150.1, ~b! c250.25, and~c! c150.4. Every symbol in the (a,r* ) plane represents one system, forming, along with
the correspondingc1 value, the triplet of (c1 ,a,r* ) necessary to characterize the system. Symbols denote the following:d, successful
convergence of the algorithm;s, convergence of the algorithm, but with unphysical parameters for the reference system;1, convergence
possible with numerical tricks; and3, no convergence possible.
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In the following we try to summarize the influence of the
three system parametersc1, a, andr* on the quality of our
results. The most critical parameter turned out to be the den-
sity r* : a high density leads, in general, to a slow conver-
gence, unsatisfactory results, or sometimes even to no con-
vergence at all. In addition, an influence of the concentration
can be observed: if we follow, e.g., the sequence of systems
defined by (c1 ,0.4,0.2) withc150.1, 0.25, and 0.4, then we
see that for the first two systems no convergence could be
obtained, while we found very good agreement for the
c150.4 case@see also Fig. 3~c!#. From this we can conclude
that a strong nonadditivity can be compensated more easily
for a more equilibrated concentration distribution of the par-
ticles in the mixture: in general, one observes better results
for those cases where the differences in the concentrations
are not too large. Finally, nonadditivity as such~if it does not
reach extreme values! turns out to be no crucial parameter
for the convergence of the algorithm. Finally, we want to
note that we could not find correlations between the packing
fraction of the reference systemh ref and the effective pack-
ing fraction of the nonadditive HS system„defined, e.g., as
heff5(p/6)r* @11(11a)3#; cf. @43#….

Figure 3 shows the PDFs obtained by our method in com-
parison with MC data@36# for four selected systems: Fig.
3~a! displays results for a system where convergence was
very slow, while the slow decay of the PDFs as functions of
the distancer in Fig. 3~d! indicates a near phase transition.

2. Coulombic system

In Fig. 4 we present results of the PDFs that we have
calculated for a binary ionic mixture, i.e., of a system of
point ions in a uniform neutralizing background in compari-
son with MC data@38#. We consider several such systems
where the charges are given byZ151 andZ255 and a pa-
rameterG1, with G15GZ1

5/3A3 (c1Z11c2Z2). G5e2/(akBT)
is the usual coupling parameter anda is the Wigner-Seitz
radius (1/r54pa3/3). Agreement is very satisfactory; this
also holds for the~reduced dimensionless! potential energy
U*5U/NkBT, which we have compiled, along with the pa-
rameters of the systems investigated, in Table I.

3. Lennard-Jones systems

The most simple~continuous! model systems with an at-
tractive potential tail are LJ systems. We use the standard

FIG. 3. Partial PDFsgi j (r ) ~as labeled! as functions ofr for binary symmetric nonadditive HS systems considered in our study for the
following (c1 ,a,r* ) triplets as functions ofr /a „a35@(3/4p)(1/r* )#…: ~a! ~0.1,20.2,0.8!, ~b! ~0.4,20.5,0.8!, ~c! ~0.4, 0.4, 0.2!, and ~d!
~0.5, 0.5, 0.15!. Symbols denote the following:s, MC results@36#; line, present study.
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parametrization~with the distance parameterss i j and the
potential parameters« i j*5« i j /kBT) and the usual expressions
for the interatomic potentials

F i j* ~r !5bF i j ~r !54« i j F S s i j

r D 122S s i j

r D 6G . ~21!

The parameterss i j and« i j , i , j51,2, of the systems in-
vestigated in this study have been taken from an Ar-Kr mix-
ture used in a MC study@44# and reused recently in an ap-
plication of a binary RHNC version@5#. Based on this
~additive! model system we have introduced nonadditivity
both with respect to distance and energy via

s i j5
1
2 ~s i i1s j j !~11a!, « i j5jA« i i« j j . ~22!

The parametersa andj used in this study are compiled in
Table II. As explained in the caption, the table also contains
information where problems~concerning either the numeri-
cal convergence or discrepancies with computer simulation
data! were encountered~cf. also discussion below!.

Except for the systems characterized by large nonadditiv-
ity parameters (a520.2 or10.1 and/orj 5 0.9 or 1.1!, we

obtained very satisfactory agreement with MD data. Among
all these systems considered in this study we have chosen a
few with a high degree of nonadditivity and have depicted
them in Fig. 5: Fig. 5~a! shows the perfect agreement that is
encountered for most of the systems investigated. This pecu-
liar system is characterized by the (j,a) pair ~0.9, 0.0!, i.e.,
the mixture is additive with respect to the distances and non-
additive with respect to the potential depth. Figures 5~b! and
5~c! show results for the systems~1.1, 20.15) and~1.1,
0.10!, i.e., for rather strongly nonadditive mixtures. Even
though slight differences between the numerical and the
simulation data are observed, these figures demonstrate, nev-
ertheless, the wide applicability of our proposed method: for
the first system, the characteristic wiggles ing11(r ) around 7
Å are reproduced very nicely and for the other system we
still obtain very good agreement even though the peak
heights of the three partial PDFs have become already rather
high, i.e., the system is quite dense.

4. Binary alloys

As a final class of model systems we have chosen binary
alloys, which, in contrast to LJ mixtures, are characterized
by long-rangedattractive oscillating pair potentials. For sim-
plicity we have chosen in this study a binary alkali alloy
K cCs12c , varyingc over the entire concentration range and
considering three different temperatures. This system has
been object to a previous experimental@45# and therefore, as
one of the rare binary systems for which extensive neutron-
scattering experiments have been performed, to several theo-
retical investigations@4,46,47#. Similar integral-equation
studies have been performed on other alkali alloys@48#. The
interatomic potentials are based on pseudopotential theory,
using a simple Ashcroft ‘‘empty-core’’ pseudopotential@49#
and the Ichimaru-Utsumi parametrization for the exchange-
correlation corrections@50#. The logarithmic singularity in
the Lindhard function is known to be responsible for the
long-ranged oscillations in the potentials@51#. The number

FIG. 4. Partial PDFsgi j (r ) ~as labeled! as functions ofr ~in
units of the Wigner-Seitz radiusa of the equimolar (c15c250.5)
binary Coulombic system considered in our study~for system pa-
rameters cf. the text and Table I!: d, MC results@38#; line, present
study.

TABLE I. Parameters for the binary Coulombic systems consid-
ered in this study and results for the reduced dimensionless poten-
tial energyU*5U/(NkBT) in comparison with simulation~MC!
and HNC results.h is the packing fraction of the HS reference
system.

Z1 Z2 G1 c2 UMC*
a U* UHNC* h

1 5 10 0.05 214.02753 214.0081 213.929 0.292
6 0.00015

1 5 10 0.10 220.05840 220.0301 219.926 0.330
6 0.00017

1 5 10 0.20 232.12399 232.0974 231.924 0.382
6 0.00023

1 5 10 0.50 268.33913 268.3609 267.940 0.451
6 0.00032

aReference@38#.

TABLE II. Parameters of the LJ systems~Ar-Kr mixture with
parameters taken from@44#! investigated in this study. For all sys-
tems the following parameters have been chosen:r5 0.01834 Å
23, T5115.8 K, andcAr5cKr50.5; sAr53.405 Å,sKr53.633 Å,
«Ar* 51.0345, and«Kr* 51.442. The Ar-Kr parameters are defined via
sAr Kr5

1
2(sAr1sKr)(11a) and «Ar Kr5j(«Ar«Kr)

1/2. For systems
marked bys or d no numerical problems were encountered and
agreement with MD data was very satisfactory~cf. the text and
figures!; d indicates those systems for which the PDFs are depicted
in Fig. 5. For systems marked by3 no numerical convergence of
the procedure could be obtained and for the system marked by1
numerical convergence was obtained, but agreement with simula-
tion data was found to be unsatisfactory. The last line lists the
packing fractionh of the HS reference system~the values depend
only weakly onj).

j a

20.20 20.15 20.10 20.05 0.0 0.0 0.10
0.9 3 s s s d s 3

1.0 3 s s s s s 3

1.1 1 d s s s s d

h50.28 h50.28 h50.34 h50.39 h50.43 h50.45 h50.46
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densities of the systems have been taken from@52#; the other
parameters characterizing the model for the systems are com-
piled in Table III. We have compared data obtained by our
proposed method with MD results and HMSA data@53# @i.e.,
a parametrized integral-equation method, with a closure in-
terpolating between HNC and soft MSA~SMSA!#; in the
latter case thermodynamic self-consistency was obtained by
means of one adjustable mixing parameter and requiring
equality for the compressibility obtained via the virial and
the compressibility route. In the previous HMSA study on
this system@4# it was found that for lower temperatures~in
our case, at 373 K! self-consistency could not be obtained for
the allowed range of the mixing parameter; however, for
higher temperatures equality between the two routes could

be fulfilled and led, in comparison to simulation data, to a net
improvement over simple, unparametrized integral-equation
approaches, such as the SMSA or the HNC approximation.

In Fig. 6 we present results obtained by the method pre-
sented here and compare them with simulation results. Since
for all systems agreement turned out to be very satisfactory
~i.e., within numerical accuracy! we restrict ourselves to two
typical examples, which are marked in Table III. In contrast
to the HMSA integral-equation approach, we were able to
obtain with our method self-consistency forall systems, i.e.,
even for low temperatures. In a direct comparison at higher
temperatures, differences between the thermodynamically
self-consistent HMSA data and the present results turn out to
be very small.

FIG. 5. Partial PDFsgi j (r ) ~as labeled! as functions ofr ~in angstroms! for the three LJ systems~Ar-Kr ! considered in our study~for
system parameters cf. the caption of Table II! with the following (j,a) parameters:~a! ~0.9,0.0!, ~b! ~1.1,20.15), and~c! ~1.1,0.10!.
Symbols denote the following:s, MD data; lines, present study.
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5. Bridge functions

Similar to a previous study on the one-component case
@10#, we have also studied ther dependence of the bridge
functions obtained from our method. They are displayed in a
logarithmic plot in Fig. 7 for two binary ionic mixtures@Fig.
7~a!# and for two metallic alloys@Fig. 7~b!#; for the LJ sys-
tems we obtain results similar to those for the binary alloys.
The crucial parameter to characterize the behavior is the
packing fractionh of the reference system; for the cases
displayed in Fig. 7 the corresponding values are indicated in
the caption. We also note, despite similarh values, charac-
teristic differences in the range of the bridge functions be-
tween ionic and strongly repulsive systems: while in the first
case thebi j (r ) decay rapidly as functions ofr , the oscilla-
tions of the bridge functions of the binary alloys extend over
a large r range ~the distance is measured in Wigner-Seitz
unitsa). In both cases the decay turns out to be faster as the
packing fraction decreases. We also note the characteristic
oscillations that are already observed fromr;2a onward;
they are similar to the oscillations encountered for the PDFs
where they are caused by the distribution of the poles of the
Laplace transform of the PDFs. This has been observed by
Martynov @54# and discussed in detail by Evans and co-
workers@55# ~for the binary case see also@56#!.

B. Application: The binary inversion problem

A few years ago, Levesqueet al. @22,23# proposed an
iterative procedure for the solution of the ‘‘inversion prob-
lem’’ of classical liquid state theory, i.e., the determination
of an effective pair interaction from the pair structure. Initial
attempts to solve this problem date back to the 1960s@18#
and were followed by several other attempts@19,21# that
either failed in parts of the phase space or were not general
enough to be applied to any liquid. Also attempts to obtain
the pair interaction by fitting a parametrized potential via
computer simulation to experimental structure data should be
mentioned here@17#. In contrast to all these attempts the
method proposed by Levesque and co-workers overcomes all
these drawbacks~at least in the one-component case!: it can
be applied to any simple liquid and gives reliable results
even near the triple point, i.e., in a region of the phase dia-
gram, where the structure is not too sensitive to the inter-

atomic potential and the inversion problem is hence very
difficult to solve accurately. Although the generalization of
the formalism to the binary case is straightforward, its real-
ization is by no means trivial and even fails in some cases: in
a recent study it was shown@25# that for the case of small
minority concentrations the statistical errors in the computer
simulation step accumulate and do not lead to satisfactory
results. Furthermore, the required ‘‘extension’’ of the simu-
lation data over a largerr range also bears some arbitrariness
in itself. To overcome the problem of small concentrations
we would require larger ensembles, which, despite the com-
putational power of present-day workstations, soon brings us
to natural limits. On the other hand, smoothing of the simu-
lation data leads to a biasing@26# of the results and therefore
not to very satisfactory results either.

TABLE III. System parameters of the KcCs12c alloys investi-
gated in this study. The core radiir c of the Ashcroft ‘‘empty-core’’
pseudopotential are chosen to ber c51.2012 Å ~K! and
r c51.4393 Å ~Cs! @51#; the listed number densities are obtained
from data in@52# by linear interpolation of the atomic volumes.h is
the packing fraction of the HS reference system. Systems marked
by * are depicted in Fig. 6.

cK T ~K! r ~Å23) h

0.2 373 0.00876 0.45
0.4 373 0.00949 0.45
0.6 373 0.01034 0.45
0.7 373 0.01083 0.45
0.8* 373 0.01137 0.45
0.4* 773 0.00833 0.32
0.7 973 0.00889 0.28

FIG. 6. Partial PDFsgi j (r ) ~as labeled! as functions ofr ~in
angstroms! for two KcCs12c alloys considered in our study:~a!
c50.8 andT5373 K and~b! c50.4 andT5773 K; for further
parameters cf. Table III. Symbols denote the following:s, MD
data; lines, present study.
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Since we have shown in Sec. III A that our approach pro-
posed here is able to yield results as accurate as computer
simulations, we have replaced the simulation step in the in-
version scheme by our method and checked the reliability of
the results. The predictor-corrector inversion scheme works
as follows. We are given a set of ‘‘experimental’’ structure
data $g11(r ),g22(r ),g12(r )%5g05gexpt from which we can
also calculate, via the Ornstein-Zernike equations, the direct
correlation functionsc05cexpt; we assume that these func-
tions are ‘‘produced’’ by the set of interatomic potentials
F0, which are still unknown and which we want to deter-
mine in this procedure. In practical applications~as, e.g., in
@24#! the g0 are known from experimental scattering data;
here, where we would like to test the reliability of our
method, these data have been produced in a computer experi-
ment using the pair interactionsF0. Fromg0 we determine,
e.g., via some liquid state theory~PY or MHNC approxima-
tion!, a set of interactionsF1, i.e., a predictor~or first guess!
for F0. The subsequent~corrector! step is a computer simu-
lation ~replaced in this work by our method! performed for a
system characterized byF1, yielding the PDFsg1. Using the
universality hypothesis of the bridge functions@12# one can
now construct a new predictorF2 for F0 and thus ends up in
an iterative formalism that enables us to calculate the poten-
tials Fk from theFk21, i.e., the potentials of the preceding
step:

F i j
k ~r !5F i j

k21~r !1 ln@gi j
k21~r !/gi j

expt~r !#1ci j
k21~r !2ci j

expt~r !

2gi j
k21~r !1gi j

expt~r !. ~23!

The sequence of theFk should tend towardsF0. As men-
tioned above, the crucial point in the binary case is the cor-
rector step, i.e., the simulation step. In this work we have
replaced this simulation by our integral-equation method,
where small concentrations do not affect the reliability of the
results.

We have investigated several systems and present results
for three of them (A, B, andC). They are again Ar-Kr mix-
tures characterized by LJ potentials@cf. ~21!#; their system
parameters are compiled in Table IV. In particular, systems

FIG. 7. ln@bij(r)# vs r /a (a being the Wigner-Seitz radius! for four different systems~11, full line; 12, dotted line; and 22, broken line!.
h is the packing fraction of the HS reference system taken from the respective tables.~a! Binary ionic mixtures as characterized by
parameters of Table I: top,c250.5 andh50.451; bottom,c250.05 andh50.292.~b! Binary alloys~for system parameters cf. Table III!:
top, T5373 K, cK50.2, andh50.45; bottom,T5973 K, cK50.7, andh50.28.

TABLE IV. Potential parameters« i j* and s i j ( i j51,2) of the
three LJ systems investigated (A–C) in the inversion section.c1 is
the concentration of species 1. The mass of atom 1~2! is that of Ar
~Xe!, i.e., 6.682310226 kg (2.180310225 kg! and the mass density
is for all systems 1874 kg m23. N is the number of particles in the
MD simulation.

System «11* «12* «22* s11/s22 s12/s22 c1 N

A 0.4278 0.6278 0.8278 0.873 0.936 5/8 4000
B 0.4278 0.6278 0.8278 0.873 0.936 1/10 6912
C 0.4278 0.6278 0.8278 0.873 0.936 1/20 16384
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B andC have been chosen with small minority concentra-
tions (c150.1 andc150.05) in an effort to demonstrate that
the present version of the inversion scheme yields reliable
results even for such cases. The experimental data have been
produced in standard MD simulation runs~see above! over
20 000 time steps with the number of particles indicated in
Table IV. From this table one can also see that the number of
particles has been increased with decreasing minority con-
centration in order to guarantee a high accuracy of the ex-
perimental data. Theg0 have been extended beyond the cut-
off radius r cut54s22 of the simulations by two different
closure relations, i.e.,ci j

0 (r )50 andci j
0 (r )52bF i j

0 (r ).
Note that for smooth data~i.e., with little statistical noise!

for the PDFs, the inversion problem is solved inoneiteration
within the approximation of universality of the bridge func-
tional: inserting the experimentalg0 into the bridge func-
tional, we get the bridge functions as functions of the refer-
ence parameters, which are then optimized by the Lado
equations. With thus specifiedb̄i j (r ) we just employ the
MHNC closure and the Ornstein-Zernike relations and obtain
the potentialsF i j (r ) from the experimentalgi j

0 (r ). Applying
this procedure to thegi j (r )’s specified above reproduces
quite accurately the correct potentials in Fig. 8~a! @denoted as
F̄i j
1 (r )#. The accuracy obtained by this procedure depends of

course on the accuracy~i.e., in our case on the statistical
error! of the PDFs; in this figure we have therefore displayed
the results systemB with a minority concentration of 0.1.
Despite the good results of this first guess we have demon-
strated the robustness of the method by adeliberatedistor-
tion ~‘‘by hand’’ ! of the initial guess of the predictor-
corrector scheme.

The first guess for the potentialF1 in the predictor-
corrector scheme has been obtained by deliberately modifiy-
ing the original interactionsF0 by hand. For simplicity we
have assumed the sameF1 for all systems;F0 andF1 are
depicted in Fig. 8~a!. By applying the inversion procedure
outlined above we create a sequence ofFi . The results are
depicted in Figs. 8~b!–8~d! for systemsA–C. For the first
system we got a satisfactory solution after four steps. The
small oscillations observed in the potentials in the region
1.5s22–1.8s22 are due to the size effects of the MD results;
they are much weaker in systemB, where a larger ensemble
has been considered. For systemB a satisfactory conver-
gence of the algorithm is observed after three steps. For sys-
temC ~characterized by the smallest minority concentration
c150.05, corresponding to;800 particles of type 1! we
obtained again satisfactory results after three iterations. Only
near;1.8s22 oscillations are visible that have to be attrib-
uted to the statistical errors in the simulation data for
g11(r ). In general, the results turn out to be rather insensitive
to the closure used for the extension of the experimental
data. However, a grid of at least 1024 points and of a mesh
size of 0.01~in Wigner-Seitz radiia) is recommendable to
obtain the displayed accuracy.

The advantages of using the integral-equation approach
instead of the simulation in the iterative procedure are
quickly summarized: the present version is much faster since
simulations for ensembles of 7000 particles~or even more!
over several thousands of time steps are still very time con-
suming. In addition, every simulation~representing the cor-

rector step! introduces some additional statistical error,
which in the end do not cancel out but rather accumulate;
this results in a higher number of iteration steps~i.e., 12
instead of 3–4! and statistical errors~i.e., rapid oscillations!
even for intermediate concentrations~cf. Figs. 1–3 in@25#!.
The crucial basis for a successful and rapid convergence of
the algorithm remains~in both cases! accurate and reliable
input data of the structure.

IV. CONCLUSION

In this paper we have investigated an integral-equation
approach to determine the structure and thermodynamics of a
binary mixture of simple liquids. In this method the
Ornstein-Zernike equations are solved along with a MHNC-
RHNC-type closure relation where the bridge functions are
calculated from an~approximate! bridge functional, which,
in turn, is calculated from a model free-energy functional for
the reference system. The basic assumption of our method is
the universality hypothesis at the level of the bridgefunc-
tional ~which is easily obtainable via functional derivative
from the free-energy functional!. In contrast to previous
MHNC and RHNC calculations~where universality was as-
sumed at the level of the bridgefunctions! the bridge func-
tions used here contain~via the functional! the structure of
both the reference system and the system under consider-
ation. As a reference system we have chosen a mixture of
additive HS for which, as shown recently, an expression for
the excess free-energy functional based on fundamental geo-
metric properties of the individual spheres can be con-
structed. This functional may be applied, in its most general
case, to inhomogeneous liquids and reproduces in the homo-
geneous case the expressions based on the analytic PY solu-
tion and the scaled particle theory. As a result of the accu-
racy of the bridge functional and the universality hypothesis,
a Lado-type criterion guarantees a high degree of thermody-
namic self-consistency.

The reliability and numerical accuracy of this method was
tested for several model liquids~HS, binary Coulombic sys-
tems, LJ mixtures, and binary liquid alkali alloys! over a vast
range of parameters; these parameters were also chosen so as
to create a strongly nonadditive system, with respect to both
the distance and energy parameters. Numerical results were
compared with simulation data~Monte Carlo and MD simu-
lations! taken either from literature or produced for this
work. In general, agreement is very satisfactory, even for
strongly nonadditive systems. Problems were encountered
for those parameter combinations where simulations and
other liquid state methods predict a near phase separation.
The answer to the question how accurately our method is
able to reproduce phase stability and phase diagrams must be
postponed to a later study. Our results demonstrate that,
within numerical accuracy, the present method based on uni-
versality of the bridge functional is as accurate and reliable
as present day simulations.

In order to substantiate this ‘‘claim’’ in a practical appli-
cation we have replaced computer simulation by this ap-
proach in an algorithm to solve the classical inversion prob-
lem in liquid state theory. The method chosen is an iterative
algorithm proposed some years ago by Levesqueet al. and
represents at present the most reliable tool to solve this non-
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trivial problem. One iteration consists of a predictor and a
corrector step, where, as proposed in the original work, the
corrector step is realized by a computer simulation. In this
work we have replaced this simulation by our approximate
method and find that it indeed can be used in this framework
and that the iterative algorithm converges in a very satisfac-
tory way. In addition, and in contrast to simulations, the
inversion scheme using our method in the corrector step
gives reliable results for those system parameters where
simulations fail, i.e., for small minority components. From

the numerical point of view the algorithm turned out to be
rather robust and can, in principle, although with a consider-
able formal effort~which might be achieved by use of formal
languages, such asMATHEMATICA !, be generalized to more-
component systems.

On the basis of all those comparisons we may conclude
that by capturing the correct geometrical features, the
fundamental-measure bridge functional leads to an accurate
description of all types of homogeneous simple liquid mix-
tures of which the pair correlation functions can be grossly

FIG. 8. ~a! Interatomic potentials~as labeled! F0 ~initial potential, full line!, F1 ~first guess by deliberate distortion, broken line!, and
F̄1 ~first guess as described in the text, long-dashed line! used in this contribution for the inversion scheme as functions ofr in units
s22. ~b! Comparison of the initial potentialsF0 ~full line! with the ~converged! F4 ~broken line! for systemA @for labels cf.~a!#. ~c!
Comparison of the initial potentialsF0 ~full line! with the ~converged! F3 ~broken line! for systemB @for labels cf.~a!#. ~d! Comparison of
the initial potentialsF0 ~full line! with the ~converged! F3 ~broken line! for systemC @for labels see~a!#.
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interpreted in terms of effective hard-core repulsions. Molten
salts and electrolytes, when they feature pair correlation
functions with very strong nonadditivity of the effective
spheres, cannot be expected to be similarly well represented
by the HS bridge functional and will be considered in a
separate work.
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APPENDIX A: THE FREE-ENERGY FUNCTIONAL

The geometrically based fundamental measure functional
takes the form@7,8,15#

1

kBT
Fex
HS@r#5E dr F$n~r !%, ~A1!

where F is a function of a set of weighted densities
$n(r )%5(n0 ,n1 , . . . ,na , . . . ) related to the set of density
profiles$r% via

na~r !5(
i
E dr 8r i~r 8!vi

~a!~r2r 8! ~A2!

and the weight functions$vi
(a)(r 8)% are characteristic func-

tions for the geometry of the particles. For a three-
dimensional sphere of radiusRi the set of weight functions is

v i
~0!~r !5

1

4pRi
2v i

~2!~r !,

v i
~1!~r !5

1

4pRi
v i

~2!~r !5uvi
~1!~r !u,

v i
~2!~r !5d~Ri2ur u!5uvi

~2!~r !u,
~A3!

v i
~3!~r !5Q~Ri2ur u!,

vi
~1!~r !5

1

4pRi
vi

~2!~r !,

vi
~2!~r !5

r

r
d~Ri2ur u!,

where the first four equations are the scalar weight functions,
and the last two equations are the vector wave functions. In
principlev i

(3)(r ), v i
(2)(r ), andvi

(2)(r ) are sufficient to cal-
culate the full set$vi

(a)%.

The convolution integrals are most readily performed in
q space, where they reduce to products of the Fourier trans-
forms of the two functions involved. The Fourier transforms
of the weight functions~denoted by a tilde! are given by

ṽ i
~0!~q!5

sin~qRi !

qRi
Ri

~0! ,

ṽ i
~1!~q!5

sin~qRi !

qRi
Ri

~1! ,

~A4!

ṽ i
~2!~q!5

sin~qRi !

qRi
Ri

~2! ,

ṽ i
~3!~q!53

sin~qRi !2~qRi !cos~qRi !

~qRi !
3 Ri

~3! .

ṽi
~1!~q!5

1

4pRi
ṽi

~2!~q!,

ṽi
~2!~q!521A21qṽ i

~3!~q!,

TheRi
(g) , g50, . . . ,3,describe characteristic geometric fea-

tures of theindividual spheres

Ri
~0!51, Ri

~2!54pRi
2 ,

~A5!

Ri
~1!5Ri , Ri

~3!5
4p

3
Ri
3 .

Furthermore, one finds for the limitsq→0

lim
q→0

ṽ i
~g!~q!5Ri

~g! , lim
q→0

ṽi
~g!~q!50. ~A6!

It is then obvious that in the uniform limit the scalar densities
na(r ) become

ng~r !→jg5(
i

r iRi
g , g50, . . . ,3, ~A7!

while the vector densitiesng(r ) vanish in this limit. In par-
ticular, j35h, the packing fraction.

One finds finally thatF$n(r )% is given by@7,8,15#

F$n~r !%52n0ln~12n3!1
n1n2

~12n3!
1

1

24p

n2
3

~12n3!
2

2
n1•n2
12n3

2
1

8p

n2~n2•n2!

~12n3!
2 . ~A8!

Again the first line contains the scalar contributions, while
the second line represents the vector contributions. It is pos-
sible to construct a ‘‘simplified’’ free-energy model with a
different set of entirelyscalarweight functions@57#, requir-
ing, however, the inclusion of derivatives of generalized
functions. The equivalence of this simplified model and the
original ~present! one has been shown explicitly in@58#,
where also a detailed comparison between both versions of
the model is done.
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As already outlined in Sec. II A@Eqs. ~4! and ~5!#,
density-functional theory provides the possibility to calculate
the direct correlation functionsc1, . . . ,n

(n),FD @r#(r1 , . . . ,rn) via
the functional derivative of the excess free-energy functional
Fex@r# with respect to the one-particle densitiesr i(r k). One
then obtains the general expressions

c~n!~r1 , . . . ,rn!

52E dr (
a1 , . . . ,an

F ]F

]na1
•••]nan

U
$na%5$na~r !%

G ~r !
3v1

~a1!
~r12r !•••vn

~an!
~rn2r !

2E dr (
b1 , . . . ,bn

F ]F

]nb1
•••]nbn

U
$nb%5$nb~r !%

G ~r !
3v1

~b1!
~r12r !•••vn

~bn!
~rn2r !, ~A9!

c̃ ~n!~q1 , . . . ,qn!

52 (
a1 , . . . ,an

F ]F

]na1
•••]nan

G
$na%5$ja%

3ṽ1
~a1!

~q1!•••ṽn
~an!

~qn!dS (
i
qi50D

2 (
a1 , . . . ,an

F ]F

]na1
•••]nan

G
$na%5$ja%

3ṽ1
~a1!

~q1!•••ṽn
~an!

~qn!dS (
i
qi50D , ~A10!

again separated into scalar and vectorial contributions.
In particular one obtains forn51 andn52 the expres-

sions in the homogeneous case@59,60#

2ci
~1!~r !52~kBT!21m i ,ex52(

a
maRi

a , ~A11!

2ci j
~2!~r !5x~3!DVi j ~r !1x~2!DSi j ~r !1x~1!DRi j ~r !

1x~0!Q@r2~Ri1Rj !#. ~A12!

The coefficientsm i
a andx (a) are functions of thejk and are

explicitly given by

m~0!52 ln~12j3!, m~1!5
j2

~12j3!
,

~A13!

m~2!5
j1

~12j3!
1

1

8p

j2
2

~12j3!
2 ,

m~3!5
j0

~12j3!
1

j1j2
~12j3!

2 1
1

12p

j2
3

~12j3!
3 ,

x~0!5
1

~12j3!
, x~1!5

j2
~12j3!

2 ,

~A14!

x~2!5
j1

~12j3!
2 1

1

4p

j2
2

~12j3!
3 ,

x~3!5
j0

~12j3!
2 1

2j1j2
~12j3!

3 1
1

4p

j2
3

~12j3!
4 .

The factors of thex (g) in ~A12! now represent character-
istic quantities of thepair exclusion volume of two spheres
with radii Ri andRj at a distancer from each other@e.g.,
DVi j (r ) is the overlap volume andDSi j (r ) is the overlap
surface#. ci j

(2)(r ) in ~35! is identical to the analytic expression
obtained by Lebowitz and Rowlinson@39# within the PY
approximation. The uniform fluidc(3) has been favorably
compared with computer simulations@60,61#.

APPENDIX B: THE LADO CRITERION

Introducing a reference system, we can rewrite Eq.~6! as

Fex@r#5Fex
~2!@r0 ;r#1†Fex

~2!@r0 ;r#2Fex
~2!,ref@r0 ;r#‡, ~B1!

where the term in bold square brackets represents the func-
tional Fex

(B), ref@r#, which generates the bridge functional of
the reference systemBi

ref@r0 ;g#(r ).
In the above equations the second-order functionals for

the system and the reference system can be calculatedin the
bulk ~due to the absence of the bridge functions! from the
HNC expression for the free-energy functional, i.e.,

Fex@r0#5F ref@r0#1FHNC@r0#2FHNC
ref @r0#. ~B2!

The explicit expressions for these functionals are given in
@62,63#.

As demonstrated in@63#, the PDFsgi j (r ), obtained from a
HNC solution of the OZ equations for a given set of poten-
tials F i j (r ), guarantee that the variation of the HNC func-
tional FHNC@r0# is given by

dFHNC@r0#5
r

2kBT
(
i , j

cicjE dr gi j ~r !dF i j ~r !. ~B3!

Since the bulk limit of the optimized free energy is the so-
lution of HNC equations with the effective interactions
$F i j

eff(r )1b̄i j
ref(r )% ~for FHNC

ref @r0#) and$F i j (r )1b̄i j
ref(r )% ~for

FHNC@r0#), respectively, we obtain

dFHNC@r0#5
r

2kBT
(
i , j

cicjE dr gi j ~r !db̄i j
ref~g;r !,

~B4!

dFHNC
ref @r0#5

r

2kBT
(
i , j

cicjE dr gi j
ref~r !@dF i j

ref~r !
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1db̄i j
ref~gref;r !#. ~B5!

Relation~B3! holds, furthermore, for the variation of the
exact free-energy functional with respect to the variation in
theF i j (r ), i.e.,

dF ref@r0#5
r

2kBT
(
i , j

cicjE dr gi j
ref~r !dF i j

ref~r !. ~B6!

Adding these three terms according to~B1! we obtain

dF@r0#5
r

2kBT
(
i , j

cicjE dr @gi j ~r !db̄i j
ref~g;r !

2gi j
ref~r !db̄i j

ref~gref;r !. ~B7!

Concluding on the basic assumption of our method that
the bridge functional is relatively insensitive to the actual
shape of the input PDFs@i.e., db̄i j

ref(g;r );db̄i j
ref(gref;r )#, we

finally obtain

dF@r0#5
r

2kBT
(
i , j

cicjE dr @gi j ~r !2gi j
ref~r !#db̄i j

ref~g;r !.

~B8!

The optimal choice of the reference system makesdF@r0#
stationary with respect to the variation of the reference sys-
tem parameters and leads to Eq.~16!.
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