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Abstract 

The velocity autocorrelation function obtained in a computer experiment was interpreted in terms of a mode-coupling 
(MC) theory proposed by SjBgren and co-workers. The system chosen is liquid sodium at two different temperatures, 403 
and 1003 K. The MC terms of the velocity-autocorrelation function were separated into density-density, density-current and 
current-current contributions. For the ‘binary’ contribution a simple model is used; it is found that for the low temperature 
this functional form (with one adjustable parameter) gives reliable and satisfactory results, while for higher temperatures the 
model is no longer applicable. Hence, for a comprehensive application of MC theory, a better understanding of the binary 
effects is required. 

1. Introduction 

The interpretation of dynamic processes of simple liquids obtained from computer experiments in terms of 
simple hydrodynamic or memory function (MF) models [l] has reached its limits [2]: several phenomena, such 
as, for example, the positive dispersion for low temperatures [3] or the full-width at half maximum of the self 
dynamic structure factor [2] cannot be interpreted in terms of such simple models. In an effort to describe these 
processes, mode-coupling (MC) (or ‘first principles’) theories were developed about twenty years ago [4,5]. In 
their rather complex formalism they describe the MF of one dynamic correlation function (CF) in terms of the 
other CFs, hence the name ‘mode-coupling’. Computer experiments offer an ideal possibility to investigate the 
reliability of such methods: in contrast to most neutron scattering experiments they make the full set of CFs 
(i.e., single particle and collective correlation functions CFs) available. The aim of this paper is to interpreted of 
the velocity autocorrelation function (VAC) obtained in computer experiments in terms of a MC theory 
proposed by Sjijgren and co-workers [4] and to discuss the effects of temperature. To this end we have 
investigated two states of liquid Na. Similar studies have been performed for other CFs [6-81. 
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2. Calculations 

2.1. Basic formalism 

The basic quantity of interest is the normalized VAC t/(t) which satisfies the memory equation 

4(t) = $7(r’)$(t-t’)dt’. (1) 

In Laplace space (characterized by argument z) an approximate expression [4] can be derived by summing 
repeated collisions to all orders of K(z): 

KB( z> + Root z> + KB( z> Ro,( z> 
K(z) = 1 -R,,(z) -q&p&) - [KS(Z) i-R,,(z) +KB(Z)Roltz>lR22(d . (2) 

Ka( z), a rapidly decaying function in time, describes the uncorrelated binary collisions between the tagged 
particle and the surrounding particles. The Rij(z) are the mode-mode coupling terms: they describe the 
coupling of the self motion to long-time decay channels. These quantities may be formulated in terms of rather 
complicated expressions; for instance, the term representing the most important contribution to K(z) in (2), i.e., 
the density-density decay channel, R,(t), is given by 

F(q’, t) 
ROo(t) =~~~~dq’q”e(q~)[s(q’) -l][F,(q’, t) -P(q’, r)] s(q,) . 

Similar expressions for the other Rij(t) are compiled in [4]. S(q) and e(q) denote the static structure factor 
and the direct correlation function and F(q, r) [ F,(q, t>] and F”(q, t) are the [self] intermediate scattering 
function and their free-particle limits. One possibility to reduce the complexity of Eq. (2) is to neglect all R&) 
except for RM(t>; we then obtain K(t) = K,(t) + K,,(t) = K,(t) + K,,(t). 

2.2. The binary part K, 

It is possible to show [4j that for small t the non-binary contributions to K(t) vanish as t4 and that the 
small-t decay of K(t) is proportional to (1 - t’); hence the small t behaviour of K(t) is entirely determined by 
the binary contribution K,(t). The initial value K(t = 0) = KB(t = 0) = 0: is given by the Einstein frequency 
(sum-rules) 

expressed in terms of the interatomic potential, v(r), and the pair distribution function g(r). n is the 
number-density and m is the mass of the particles of the liquid. Due to the complexity of the binary collisions 
one usually resorts to an ansatz for KB(t), i.e., K,(t) = fii exp (- t2/-ri> where the binary time ra can be 
interpreted as an average binary collision time. This binary time can be evaluated by a short time expansion of 
K(t) under some approximations [1,9] which gives us a theoretical value rt. 

2.3. Numerical details 

In order to obtain the full set of dynamic CFs we performed computer experiments by means of a standard 
microcanonical molecular dynamics (MD) simulation. The runs were performed for 2048 particle ensembles 
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over 100 000 time steps At (At = 1 to 3 fs). Further details are given in [2]. We used effective pair potentials 
based on pseudopotential theory (for details cf. [lo] and [2]). The systems investigated were two states of liquid 
Na, characterized by temperatures T and mass densities p (403 K/919.2 kg rnv3 and 1003 K/777 kg mm3>. 
They correspond to the states investigated by Morkel and co-workers [11,12] in neutron scattering experiments. 

We calculated the Ml? K(t) (i> by solving the memory Eq. (1) in Laplace-space [z + K(z)] I)(Z) = 1 and (ii) 
by evaluating the full expression (2), using as an input the ‘exact’ dynamic CFs obtained in our computer 
experiment. Static properties, such as g(r) and S(q) were also calculated in the same MD runs. 

3. Results 

In Fig. 1 and Fig. 2 we show our results for the VAC G,(t) and its MF K(t) for the two different Na-states 
investigated. K(t) was calculated from the full expression (2);i.e., including all decay channels possible. The 
binary part KB( t) was obtained using the exponential ansatz mentioned in Section 2.2.: the binary collision time 
7B was either calculated from the approximate expression El,91 or fitted to the small-t range of the VAC (see 
discussion above). 

The lower temperature state is a typical case for the ‘cage effect’: there the tagged particle is - due to the 
high density - enclosed in cages formed by the surrounding particles. Hence this particle will have frequent 
collisions with other particles: this causes a fast decay and a long-range oscillation in the VAC. Results are 
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Fig. 1. Velocity autocorrelation function z)(t) (top) and its MF K(t) (obtained via (2); bottom) for T = 403 K as functions of t. Symbols: 
full line: K,(t) with ~2 = 0.069 ps; broken line: K,(t) with ~a Et = 0.089 ps; 0 = results from MD simulation. 
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Fig. 2. Velocity autocorrelation function q?(t) (top) and its MF K(t) (obtained via (2); bottom) for T = 1003 K as functions of t. Symbols: 
full line: K,(t) with 7: = 0.061 ps; broken line: g,(t) with T;’ = 0.069 ps; 0 = results from MD simulation. 

displayed in Fig. 1: for the theoretical value of the collision time T: we obtained 0.079 ps and the fitted value 
7:’ is 0.089 ps. While for the first choice of 7B substantial differences were encountered near the first 
minimum in the VAC, we obtained extremely good agreement for the fitted value. We can therefore conclude 
that for low temperatures the simple exponential ansatz is in principle adequate for the binary collision term; 
however, for a reliable description a somewhat more sophisticated theory would be required to calculate the 
binary collision time TV. Small differences for the (t = 0) value of the MF between the model and the numerical 
solution of the memory equation (i.e., a violation of the sum-rule) may be attributed to numerical errors. 

The other system is a typical case of the ‘drift effect’. Compared to the low temperature case the particles can 
now move freely, hence the VAC will decay slowly in time (e(r) N t-3/2). The results displayed in Fig. 2 
show that neither the theoretical value (0.061 ps) nor the fitted value (0.069 ps) are able to describe qualitatively 
the values of the K(t) obtained from a numerical solution of the memory equation. Hence these discrepancies 
must be due to the inadequacy of the model, showing that in the expanded region we have to go beyond the 
simple ansatz noted above. Obviously in systems with rather low densities, the uncorrelated binary collisions 
follow a more complex law than given by the simple exponential ansatz. Similar results have been observed in 
preliminary calculations for the collective CFs; to be published in due course. 

Fig. 3 finally displays the different contributions to the MF Eq. (2) for the two temperature states: for 403 K 
we see the fast decay of the binary part K,(t) and the long time tail of the (approximated) MC term 
K,,(t) N R,,(t). The contribution of the transverse channel R12(t) is negligible for this state (and hence not 
displayed). The contributions from R,,(t) and R,,(t) are of opposite sign and similar size and cancel to a large 
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Fig. 3. MF K(i), its binary part K,(i), and the following mode-coupling terms as functions of i as listed in the inset (all in [ps-*I): 
density-density couplmg KM, (f), and the mode-coupling terms proportional to R,,(t), R,,(i) and R,,(t); (a) 403 K and (b) 1003 K. 

extent (which is in agreement with the results found by Sjijgren [4]). Similar results have also been found at a 
slightly different temperature by Shimojo et al. [7]. At the higher temperature the contribution of the transverse 
channel is still weak but no longer negligible, which indicates that the transverse contributions are sensitively 
temperature dependent; the contributions from R,, and in particular of R,, are now much more localized in 
time; at that temperature a slight predominance of the R,, contribution is observed. 

4. Conclusion 

We have investigated the temperature dependence of the VAC G,(t) and its corresponding MF K(t) in terms 
of a MC approach for a low- and a high-temperature state of liquid Na. The required dynamic correlation 
functions were calculated in MD computer experiments. We have found that the reliability of the description of 
the MF using the formalism of MC theory depends in a very sensitive way on the model used for the binary 
collision term: (i) for low temperatures a simple exponential ansatz is sufficient, however, for a good agreement 
with computer experiment a more sophisticated theory for the determination of the binary collision time would 
be required; (ii) for higher temperatures, the simple exponential ansatz breaks down completely: it is no longer 
able to describe the functional form of the MF in a qualitative way. Here a completely new model is required. 
Analysing the contributions of the different decay channels to the MF we find that the largest part stems from 
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the density-density channel, while the two terms describing the coupling to the longitudinal current largely 
cancel; the transverse decay channel gives only minor contributions. 
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